
BUILDER™
API Guide

Version 2022

September 29, 2022

Table of Contents

INTRODUCTION 5

About BUILDER API 5

About Permissions 5

What's New in BUILDER API 5

GETTING STARTED WITH BUILDER API 7

Prerequisites 7

Configure the API 7

Introductory Tutorial 9

GLOBAL INFORMATION AND SETTINGS 12

BUILDER and Service Versions 12

INVENTORY 14

About Inventory Service Calls 14

About Inventory Sample Use Cases 15

Get Assets by GUID 15

Get Assets by Alternate ID 19

Get Assets by Parent ID 22

In Depth: Parent ID Properties at All Inventory Levels 29

Search for Assets by Name 31

Asset Properties: Building/Facility 34

Asset Properties: Other than Facility 35

Lock and Unlock Inventory 40

Create Inventory 41

Update Inventory 46

Inventory Rollup 50

Delete Inventory 52

INVENTORY COST MODIFIERS 56

About Inventory Cost Modifiers 56

About Inventory Cost Modifier Assignments 56

- 1 -

Cost Modifier Service Calls 56

Get Available Cost Modifiers 57

Create Cost Modifier 60

Update Cost Modifier 61

Delete Cost Modifier 63

Get Cost Modifier Assignments 64

Create Cost Modifier Assignment 66

Update Cost Modifier Assignment 68

Delete Cost Modifier Assignment 70

Get Modifier Lists 72

INSPECTIONS 74

Inspection Service Calls 74

Inspection Sample Use Case 74

Color vs. Numeric Condition Rating 74

Get Inspection 75

Lock and Unlock Inventory 78

Create Inspection 79

Update Inspection 81

Delete Inspection 81

KNOWLEDGE-BASED INSPECTIONS 83

Get Knowledge-Based Inspection 83

ATTACHMENTS 85

Fetch Attachment 85

Add Attachment 88

Delete Attachment 92

PERFORMANCE METRICS 93

About Performance Metrics 93

Get Performance Metrics 94

WORK CONFIGURATION 95

Standards 95

- 2 -

Policies 95

Get Policy Sequences 95

Get FCI Policies 96

Get Prioritization Schemes 96

DATA LIBRARIES 98

Cost Data Libraries (Cost Books) 98

Cost Modifier Libraries 101

Other Data Libraries 104

COST RECORDS 105

Get Cost Records 105

Update Cost Record 106

FUNDING 108

Get Funding 108

Update Funding Record 109

WORK GENERATION (Work Items) 110

Get Work Item 110

Create Work Item 112

Update Work Item 113

Delete Work Item 114

SCENARIOS 115

Run Scenario 115

Get Scenario Information 115

Create Scenario 118

Update Scenario 128

Compare Scenario Variations 129

Delete Scenario 131

BUILDER API ADMINISTRATION 132

Proxy User 132

REFERENCES 133

Appendix A: Unit of Measure 134

- 3 -

Appendix B: System Identifier 135

Appendix C: Paint Type Identifier 136

Appendix D: Component Identifier 137

SAMPLE USE CASES 140

Index 155

- 4 -

INTRODUCTION

About BUILDER API
The BUILDER API allows communication with computerized maintenance management
systems (CMMSs) and other software through the use of service calls that create, trans-
mit, modify, and delete BUILDER data objects.

This Guide to the BUILDER API contains:

l Information for getting started with the API
l Topical introduction to the API calls
l A code example for each call
l Sample use cases

About Permissions

The permissions you need in the BUILDER API to execute a given call will parallel those
needed in the BUILDER Web interface to perform the same actions.

The permissions you have for operating via the BUILDER API are governed by the
account (user name and password) that you use to set your credentials when con-
figuring the API.

What's New in BUILDER API

With the 2022 version, the BUILDER API now supports:

l Attachments (these can be associated with assets or with inspections)
l Inventory cost modifiers
l Cost modifier libraries and lists
l Selected calls for funding and funding sources
l Cost books and cost records
l Getting additional data sets (inflation books, RSL books)
l Work items
l Scenarios

- 5 -

l Getting Facility/Building attributes using customized calls such as GetFa-
cilityConstructionTypes

l Getting selected work configuration information (policies, policy sequences, pri-
oritization schemes)

l Getting distress severity values and distress density values

- 6 -

GETTING STARTED WITH BUILDER API

Prerequisites
To get started with BUILDER API you need:

1. A specific BUILDER instance you want to connect to; know the web service URL for
this.

2. A user account for that BUILDER instance, with user name and password.

Configure the API

If you are not using a BUILDER API instance that has already been configured, see below
for the steps needed to configure the API for use.

A basic introductory tutorial is provided next. Use cases with sample code are available
in the References section.

Step 1: Add a New Service Reference

Visual Studio

To add a new service reference to the project in Visual Studio,

1. In the Solution Explorer panel, right-click on the Service Reference folder.
2. Select "Add service reference" from the dropdown list. The "Add Service Refer-

ence" popup window will appear.
3. Enter the following information in the "Add Service Reference" window:

a. For Address, insert the web service URL for your BUILDER instance iden-
tified in Step 1 of the prerequisites.

b. Ignore the Services area of the "Add Service Reference" window.
c. Make up a name for the service reference, and enter that name in the text

box below the label "Namespace".
4. Activate the OK button to add the service reference to the project.

Other (WSDL)

If you are not using Visual Studio to add a new service reference, you will need to know
the location of the WSDL. Generally, this will be

http: (or https:) //<BuilderURL>/WebService/Builder.svc?wsdl

- 7 -

For example, the link to the BUILDER WSDL for USAF when using Microsoft's svcutil.exe
is:

https://builder.cecer.army.mil/USAF/WebService/Builder.svc?wsdl

Or, for other uses:

https://builder.cecer.army.mil/USAF/WebService/Builder.svc?singleWsdl

Step 2 (Optional): Enlarge MaxReceivedMessageSize

If errors indicate that MaxReceivedMessageSize has been exceeded, you can do the fol-
lowing in Visual Studio to enlarge it:

1. Go into App.config (This should be one of the tabs across the top of the Visual Stu-
dio display).

2. Find the system.servicemodel element in the XML.
3. There should be an element below system.servicemodel called "binding".
4. Add MaxReceivedMessageSize as an attribute to binding, and set its value equal

to a large number.
5. Or, if MaxReceivedMessageSize is already present, increase its value to a large

number.

Step 3: Create a New Instance of the BuilderClient Class

The BuilderClient class is already in the Namespace created in Step 1 above. To create a
new instance of it, select one of the following methods depending on whether you have
multiple types of endpoints (for example, development vs. production) or only one.

Option A: One Endpoint Type

At the top of the body of your main program or class, insert the following:

var service = new BuilderClient();

where service is an example variable name; you may substitute your own variable
name.

Option B: Multiple Endpoint Types

At the top of the body of your main program or class, insert the following:

var service = new BuilderClient("<binding name from App.config>");

where service is an example variable name; you may substitute your own variable
name.

- 8 -

Step 4: Set the Credentials

Two or three credentials need to be set for the new BuilderClient class instance created
above. After the var.service line defined in Step 3, insert the following.

1. User name (Required). Enter your user name for the BUILDER instance you want
to connect to, as follows:

service.ClientCredentials.Username.Username = "<your BUILDER user name>";

2. Password (Required). On the next line, enter the corresponding password:

service.ClientCredentials.Username.Password= "<your BUILDER password>";

3. Endpoint Address (Optional). If you want to use a different endpoint address
than the one you entered into the "Address" field of the service reference in
Step 1, add the following line:

service.Endpoint.Address = new Endpoint.Address("<URL of the web service>");

where service is an example variable name used when creating the new
instance of the BuilderClient class. Your variable name may differ.

Step 5: Set a Global Variable

In this last step, you will choose a global variable name to represent the instance of
BuilderClient that you are using.

client = service;

where client is the global variable and service is the parameter for the con-
structor.

CAUTION: When you create a new instance of a DTO object, you can't use
the client variable; you will need to use the service reference name.

Introductory Tutorial

This topic provides instructions for doing some basic tasks using the API, to familiarize
you with getting and displaying information using BUILDER API.

Exercise 1: Check Version Numbers

Run the code below to request the version number of the Web service being used. Ver-
sion and build number will be output to the console.

- 9 -

No substitutions or replacements are needed in this code to run it.

public void getServiceFullVersion()
{
Console.WriteLine("service version is " +

client.GetVersionService().Data.Major.ToString() + "." +
client.GetVersionService().Data.Minor.ToString() + "." +
client.GetVersionService().Data.Revision.ToString() + " build " +
client.GetVersionService().Data.Build.ToString());

}
//the GetVersionService() call returns DTOVersion

If all you need is the build number, you can use this shorter piece of code:

public void getServiceBuildVersion()
{
Console.WriteLine(client.GetVersionService().Data.Build.ToString());

}

where client is the global variable name representing the instance of BuilderClient
that you are using.

Output: the BUILDER version you are using should appear on the first line
of the console, followed by the version of the Web service on the next line
of the console.

Exercise 2: List Facilities in a Complex

The functions shown in this section below show how to generate either (a) a list or (b)
an array of GUIDs representing all Facilities in a Complex. For the first input parameter
in each function, you need the GUID of the desired parent Complex (represented by
CPX_ID in the examples).

The GUID of an asset (inventory item) is its ID property. This GUID will be the same for
all of the example functions shown in this exercise.

Basic Form

The basic form of the service call is

GetFacilitiesByParentID(Guid id, int skip, int take)

where count is the number of records (Facilities), and skip and take are used for
paging: skip is the number of records to skip before returning records; take is the
number of records to be returned.

- 10 -

How Many Facilities?

The following code uses the count property of the service response and displays to the
console the number of Facility records:

public void facCount()
{

Console.WriteLine(client.GetFacilitiesByParentID(Guid.Parse("CPX_ID"), 0, 0).Count.ToString());
}

Output: On the console, you should see the total number of Facilities that
are in the Complex specified by the GUID given in the first parameter.

Display on Console

This code shows setting skip and take to display on the console the GUIDs of the first
three records:

public void getFacilitiesByParentID_A_()
{

// option A. output to console to see a list of the first 3 Facilities under the parent Complex
foreach (DTOFacility item in client.GetFacilitiesByParentID(Guid.Parse("CPX_ID"),0,3).Data)
{

Console.WriteLine(item.ID.ToString() + "\n");
}

}

This code shows setting skip and take to display on the console the GUIDs of the
next three records:

public void getFacilitiesByParentID_A_()
{

// option A. output to console to see a list of the next 3 Facilities under the parent Complex
foreach (DTOFacility item in client.GetFacilitiesByParentID(Guid.Parse("CPX_ID"),3,3).Data)
{

Console.WriteLine(item.ID.ToString() + "\n");
}

}

Store in Array

As an alternative to showing the list of Facility GUIDs on the console, you can store them
in an array:

public void getFacilitiesByParentID_B_()
{

// option B. store in an array
DTOFacility[] theFacilities = client.GetFacilitiesByParentID(Guid.Parse("CPX_ID"), 0, 100).Data;

}

Additional Exercises

Additional examples can be found at Sample Use Cases in the Reference section.

- 11 -

GLOBAL INFORMATION AND SETTINGS

This section of the documentation contains API calls that pertain to BUILDER as a whole
rather than to one aspect of it, such as inventory or inspections.

"BUILDER and Service Versions" below outlines the calls to see what BUILDER version
number your BUILDER instance is running, and what service version number the
instance is running.

BUILDER and Service Versions

Starting with the 2022 version of BUILDER API, the BUILDER service version and BUILDER
version can be obtained together with one simple call, "GetVersions() " below.

Code examples below illustrate API calls for obtaining version information about the
BUILDER service, information about what BUILDER version is being run, or both.

Code Examples: BUILDER and Service Versions

Code examples are in C#.

GetVersions()

To request the version number of the Web service and the version number of the SMS
application (BUILDER) being used, use the code below.

No substitutions or replacements are needed in this code to run it.

public void getVersions()
{
var response = client.GetVersions();

// console output (optional):
Console.WriteLine("BUILDER version is "

+ response.Data.BuilderVersion.Major.ToString() + "."
+ response.Data.BuilderVersion.Minor.ToString() + "."
+ response.Data.BuilderVersion.Revision.ToString()
+ " build " + response.Data.BuilderVersion.Build.ToString());

Console.WriteLine ("Service version is "
+ response.Data.ServiceVersion.Major.ToString() + "."
+ response.Data.ServiceVersion.Minor.ToString() + "."
+ response.Data.ServiceVersion.Revision.ToString()
+ " build " + response.Data.ServiceVersion.Build.ToString());

}
// the GetVersions() call returns DTOBuilderServiceVersionPair

- 12 -

GetVersionBuilder()

Run the code below to request the version number of the SMS application (BUILDER)
being used. Version and build number will be output to the console.

No substitutions or replacements are needed in this code to run it.

public void getBuilderFullVersion()
{
Console.WriteLine("BUILDER version is " +

client.GetVersionBuilder().Data.Major.ToString() + "." +
client.GetVersionBuilder().Data.Minor.ToString() + "." +
client.GetVersionBuilder().Data.Revision.ToString() + " build " +
client.GetVersionBuilder().Data.Build.ToString());

}
//the GetVersionBuilder() call returns DTOBuilder

If all you need is the build number, you can use this shorter piece of code:

public void getBuilderBuildVersion()
{
Console.WriteLine(client.GetVersionBuilder().Data.Build.ToString());

}

GetVersionService()

Run the code below to request the version number of the Web service being used. Ver-
sion and build number will be output to the console.

No substitutions or replacements are needed in this code to run it.

public void getServiceFullVersion()
{
Console.WriteLine("service version is " +

client.GetVersionService().Data.Major.ToString() + "." +
client.GetVersionService().Data.Minor.ToString() + "." +
client.GetVersionService().Data.Revision.ToString() + " build " +
client.GetVersionService().Data.Build.ToString());

}
//the GetVersionService() call returns DTOVersion

If all you need is the build number, you can use this shorter piece of code:

public void getServiceBuildVersion()
{
Console.WriteLine(client.GetVersionService().Data.Build.ToString());

}

- 13 -

INVENTORY

About Inventory Service Calls
Using BUILDER API, you can do the following at each inventory level:

l Get inventory (Get by GUID, or Get by Alternate ID, or Get by Parent ID, or
"Search for Assets by Name" on page 31)

l Create inventory
l Update inventory
l Get performance records (metrics); not available at Section Details level
l Delete inventory

Note About Performance Records: If you will be creating inspections, you
may want to delay getting performance records until after you have sub-
mitted the inspection information (either in the BUILDER web app or via
the API) and performed a Site or Facility rollup. This way, the performance
metrics reported will reflect your most recent information.

For most assets, performance records–such as condition index–can't be dir-
ectly viewed as a property of the asset using the API. However, the API ser-
vice call "GetPerformanceRecords(Guid ownerlink,
PerformanceRecordType metric, int year)" on page 94 can be used at all
levels of inventory except Section Detail.

Additional actions related to inventory are:

l Attachments. You can associate ("add") one or more attachments to any invent-
ory item, get the attachments, or delete them. See the chapter on Attachments.

l Rollup. You can perform global rollup, Site rollup, or Facility rollup. See "Inventory
Rollup" on page 50.

l Get rollup status. See "Inventory Rollup" on page 50.
l Get, create, assign, update or delete cost modifiers that add to the cost of assets

or multiply the cost by a fixed factor to account for regional cost variations or
other special factors. See the chapter on Inventory Cost Modifiers.

l Cost modifier libraries. Design the scope of a cost modifier by assigning it to a cost
modifier "library" that is available for a particular level and area of inventory. Get,
update or delete such library assignments. See "Cost Modifier Libraries " on
page 101 in the chapter on data libraries.

- 14 -

About Inventory Sample Use Cases
Sample use cases show code for the following functions related to inventory:

l "Use Case 1: Get Inventory" on page 140
l "Use Case 2: Add a Facility to the Inventory Tree" on page 144
l "Use Case 3: Add Inventory to a Facility" on page 146
l "Use Case 4: Update Inventory Data" on page 149

Get Assets by GUID

You can get assets from Organization down through Section Details using the BUILDER
API. This topic covers selecting one asset to get by providing its GUID (ID property). This
approach works at all inventory levels. The topic also discusses how to display or store
desired properties.

If you want to use a different method to get inventory, you can select it from this list of
the top-level options:

l Enter the GUID (ID property) of the asset. Scope: Works at all inventory levels,
and for Section Details.

l Enter the Alternate ID of the asset. Scope: Facilities/Buildings or Sections only.
l Enter the GUID (ID property) of the parent asset. This approach will return all

assets having that parent. Scope: Works at all inventory levels except the root of
the inventory tree.

l Search by Name or name fragment. Scope: Organization and Site only.

This topic explains the first alternative.

About Selecting by GUID

Scope: Works at all inventory levels.

To specify an asset by entering its GUID, you will need to enter the value in its ID prop-
erty as the argument to one of the following methods:

l GetOrganization
l GetSite
l GetComplex

- 15 -

l GetFacility
l GetSystem
l GetComponent
l GetSection
l GetSectionDetail

These service calls will get the asset specified by the GUID. See the section "Display or
Store Information" on page 18 for how to create code to display or store an asset's prop-
erties.

Converting a String to GUID Format

Using Guid.Parse

The code examples shown below take the string representation of a GUID and convert it
to GUID format simultaneously as you call the service call. The result is that a (Guid id) is
passed into the call via the parameter. In the examples, this is done using

(Guid.Parse("<guid>"));

where you insert the asset's ID property in string format (in double quotation marks)
where <guid> is shown in the model above.

Using new Guid

An alternate option, used in the use cases but not shown in the shorter code examples,
is using the following as the call parameter:

(new Guid ("<guid>"));

where you likewise insert the asset's ID property in string format (in double quotation
marks) where <guid> is shown above.

Code Examples: Get Inventory by GUID

A C# code example for each level of inventory is provided below. The code examples
incorporate the approach of converting a string to GUID format, as explained in "Con-
verting a String to GUID Format" above.

General Model

The examples provided below are in the format

var item = client.Get<Inventory level>(Guid.Parse("<guid>"));

- 16 -

where <Inventory level> is replaced by the word Organization or Site or another
inventory level, with initial uppercase letter; item will be an instance of the cor-
responding DTO object (such as DTOSite); and "<guid>" is the string representation
of the GUID of the asset you wish to get.

GetOrganization(Guid id)

Replace ORG_ID with the string representation of an Organization's GUID to get an
Organization and store its properties in an instance of DTOOrganization named
"theOrganization" :

public void getOrganization()
{

var theOrganization = client.GetOrganization(Guid.Parse("ORG_ID"));
}
// returns DTOOrganization

GetSite(Guid id)

Replace SITE_ID with the string representation of a Site's GUID to get the Site and store
its properties in an instance of DTOSite named "theSite" :

public void getSite()
{

var theSite = client.GetSite(Guid.Parse("SITE_ID"));
}
// returns DTOSite

GetComplex(Guid id)

Replace CPX_ID with the string representation of a Complex's GUID to get the Complex
and store its properties in an instance of DTOComplex named "theComplex" :

public void getComplex()
{

var theComplex = client.GetComplex(Guid.Parse("CPX_ID"));
}
// returns DTOComplex

GetFacility(Guid id)

Replace FAC_ID with the string representation of a Facility's GUID to get a Facility and
store its properties in an instance of DTOFacility named "theFacility" :

public void getFacility()
{

var theFacility = client.GetFacility(Guid.Parse("FAC_ID"));
}
// returns DTOFacility

- 17 -

GetSystem(Guid id)

Replace SYS_ID with the string representation of a System's GUID to get the System and
store its properties in an instance of DTOSystem named "theSystem" :

public void getSystem()
{

var theSystem = client.GetSystem(Guid.Parse("SYS_ID"));
}
// returns DTOSystem

GetComponent(Guid id)

Replace COMP_ID with the string representation of a Component's GUID to get the Com-
ponent and store its properties in an instance of DTOComponent named
"theComponent" :

public void getComponent()
{

var theComponent = client.GetComponent(Guid.Parse("COMP_ID"));
}
// returns DTOComponent

GetSection(Guid id)

Replace SEC_ ID with the string representation of a Section's GUID to get the Section
and store its properties in an instance of DTOSection named "theSection" :

public void getSection()
{

var theSection = client.GetSection(Guid.Parse("SEC_ID"));
}
// returns DTOSection

GetSectionDetail(Guid id)

Replace SEC_DETAIL_ ID with the string representation of a Section Detail's GUID to get
the Section Detail and store its properties in an instance of DTOSectionDetail named
"theSectionDetail" :

public void getSectionDetail()
{

var theSectionDetail = client.GetSectionDetail(Guid.Parse("SEC_DETAIL_ID"));
}
// returns DTOSectionDetail

Display or Store Information

Viewing information contained in the selected asset will require being aware of prop-
erties associated with that asset, and doing some coding.

- 18 -

Output to Console

To output a property to the console for viewing, use this code if the property is a string:

Console.WriteLine(item.<property>);

where item is the instance of the DTO object.

Alternatively, use the code below if the property is not a string:

Console.WriteLine(item.<property>.ToString());

Store a Single Property in a Variable

To store an individual property in a variable, use this code:

var my<property> = item.<property>;

For example,

var myCI = item.CI;

Get Assets by Alternate ID

This topic covers selecting by alternate ID, which applies only to Facilities and Sections.
It will also discuss how to display or store desired properties.

If you want to use a different method to get inventory, you can select it from this list of
the top-level options:

l Enter the GUID (ID property) of the asset. Scope: Works at all inventory levels,
and for Section Details.

l Enter the Alternate ID of the asset. Scope: Facilities/Buildings or Sections only.
l Enter the GUID (ID property) of the parent asset. This approach will return all

assets having that parent. Scope: Works at all inventory levels except the root of
the inventory tree.

l Search by Name or name fragment. Scope: Organization and Site only.

This topic explains the second alternative.

- 19 -

About Selection by Alternate ID

Scope: Facility or Section.

Note: When RPUIDs are being used at a Site or installation, an RPUID will
typically be the alternate ID for a Facility.

If an asset has an alternate ID, the service calls listed below provide an additional way to
specify a Facility/Building or a Section:

l GetFacilityByAlternateID (string AlternateID)
l GetSectionByAlternateID (string AlternateID)

These service calls will get the asset specified by the GUID. See the section "Display or
Store Information" on the facing page for how to create code to display an asset's prop-
erties.

WARNING: It is up to the client to ensure uniqueness across alternate IDs.
Getting by alternate ID will typically return one DTO object, but could
return multiple objects.

Code Examples: Get Inventory by Alternate ID

A C# code example is provided below for each level of inventory accommodated.

GetFacilityByAlternateID(string AlternateID)

To get a Facility using this approach, replace ALT_ID with the string representing a real
alternate ID such as an RPUID:

public void getFacilityByAlternateID()
{

var idFacilities = client.GetFacilityByAlternateID("ALT_ID").Data;

//Optional: display the ID of the Facilities to the console
foreach (DTOFacility item in idFacilities)

Console.WriteLine(item.ID.ToString());
Console.Read();

}
// returns (service response) array of DTOFacility

GetSectionByAlternateID(string AlternateID)

To get a Section using this approach, replace ALT_ID with the string representating a
real alternate ID:

- 20 -

public void getSectionByAlternateID()
{

var idSections = client.GetSectionByAlternateID("ALT_ID").Data;

//Optional: display the ID of the Section(s) to the console
foreach(DTOSection item in idSections)

Console.WriteLine(item.ID.ToString());
Console.Read();

}
// returns (service response) array of DTOSection

Display or Store Information

Viewing information contained in the selected asset will require being aware of prop-
erties associated with that asset, and doing some coding.

The code examples above show how to enter the alternate ID as a parameter and see
the corresponding BUILDER ID(s) on the console. To display different properties, replace
item.ID.ToString() with item.<property>, using ToString() as needed.

Full-line examples are provided in Output to Console, below.

Output to Console

To output a property to the console for viewing, use this code if the property is a string:

Console.WriteLine(item.<property>);

where item is the instance of the DTO object.

Alternatively, use the code below if the property is not a string:

Console.WriteLine(item.<property>.ToString());

Store a Single Property in a Variable

To store an individual property in a variable, use this code:

var my<property> = item.<property>;

For example,

var myCI = item.CI;

- 21 -

Get Assets by Parent ID

You can use Parent ID to get assets from Organization down through Section Details.
This topic will show code examples for getting assets that have a common parent ID. It
will also discuss how to display or store desired properties.

If you want to use a different method to get inventory, you can select it from this list of
the top-level options:

l Enter the GUID (ID property) of the asset. Scope: Works at all inventory levels,
and for Section Details.

l Enter the Alternate ID of the asset. Scope: Facilities/Buildings or Sections only.
l Enter the GUID (ID property) of the parent asset. This approach will return all

assets having that parent. Scope: Works at all inventory levels except the root of
the inventory tree.

l Search by Name or name fragment. Scope: Organization and Site only.

This topic explains the third alternative.

About Selecting by Parent ID

Scope: All inventory levels except the root of the inventory tree (root Organization or
root Site).

This approach can be used to store multiple assets in an array, to either be worked on
sequentially or selected from. Alternatively, you can get a list of items returned and
then make use of a different technique, such as getting by GUID, to see or store indi-
vidual properties.

To get assets found directly below a given parent, you will need to enter the parent's
GUID (ID property) as the argument to one of the following methods:

l GetOrganizationsByParentID. (Won't work at topmost Organization level)
l GetSitesByParentID
l GetComplexesByParentID
l GetFacilitiesByParentID
l GetSystemsByParentID
l GetComponentsByParentID
l GetSectionsByParentID
l GetSectionDetailsByParentID

- 22 -

Specifying an asset this way will usually return more than one result. See "Display or
Store Information" on page 28 for how to display information associated with the assets
returned.

Note about property name variations in the Parent ID property: Although
the phrase "ByParentID" is used in the service call at all inventory levels,
the corresponding property is not always named ParentID in the data
object. This can be helpful to know if you are looking for the ParentID prop-
erty in a child object in order to use that GUID in a call.

For details about how the property name that refers to the parent ID
changes at different inventory levels, see "In Depth: Parent ID Properties at
All Inventory Levels" on page 29.

Code Examples: Get Inventory by Parent ID

A C# code example for each level of inventory is provided below.

GetOrganizationsByParentID(Guid id)

The sample code below facilitates identifying one or a small number of desired Organ-
izations out of a list by getting each qualifying Organization, then displaying its num-
ber/name and its ID (GUID).

Note: If you have a large number of Organizations, you may prefer to use
the call "GetOrganizationsByParentIDPaged(Guid id, int skip, int take)" on
the next page.

To use this code, replace PARENT_ID with the string representation of the appropriate
GUID (the ID property of an Organization, or the ParentID property of a Site).

public void getOrganizationsByParentID()
{
var theOrganizations = client.GetOrganizationsByParentID(Guid.Parse("PARENT_ID")).Data;

// loop for output to display if desired
foreach(var item in theOrganizations)
{

Console.WriteLine(item.Number + "-" + item.Name);
Console.WriteLine(item.ID.ToString() + "\n");

}
}
// returns array of DTOOrganization

For more detail about Parent ID properties, see "In Depth: Parent ID Properties at All
Inventory Levels" on page 29.

- 23 -

GetOrganizationsByParentIDPaged(Guid id, int skip, int take)

The following code does the same thing as GetOrganizationsByParentID, except that it
delivers results in separate pages (a paged collection) rather than an array.

To use this code,

l replace PARENT_ID with the string representation of the appropriate GUID (the
ID property of an Organization, or the ParentID property of one of the Sites)

l set the integer indicating the starting point (skip; currently zero)
l set the integer defining page length (take; currently 100).

public void getOrganizationsByParentIDPaged()
{

var theOrgs = client.GetOrganizationsByParentIDPaged(Guid.Parse("PARENT_ID"), 0, 100);

// output to console to see a page of Organizations under the parent Org
foreach(var item in theOrgs)
{

Console.WriteLine(item.Number + "-" + item.Name);
Console.WriteLine(item.ID.ToString() + "\n");

}
}
// returns paged collection of DTOOrganization

For more detail about Parent ID properties, see "In Depth: Parent ID Properties at All
Inventory Levels" on page 29.

GetSitesByParentID(Guid id)

The example code below facilitates identifying one or a small number of desired Sites
out of a list by getting each qualifying Site, then displaying its number/name and its ID
(GUID).

To use this code, replace PARENT_ID with the string representation of the appropriate
GUID (the ID property of an Organization, or the ParentID property of one of the
Sites).

public void getSitesByParentID()
{

var theSites = client.GetSitesByParentID(Guid.Parse("PARENT_ID")).Data;

// loop for output to display if desired
foreach (var item in theSites)
{

Console.WriteLine(item.Number + "-" + item.Name);
Console.WriteLine(item.ID.ToString() + "\n");

}
}
// returns array of DTOSite

- 24 -

For more detail about Parent ID properties, see "In Depth: Parent ID Properties at All
Inventory Levels" on page 29.

GetComplexesByParentID(Guid id)

The example code below facilitates identifying one or a small number of desired Com-
plexes out of a list by getting each qualifying Complex, then displaying its number/name
and its ID (GUID).

To use this code, replace PARENT_ID with the string representation of a real parent
GUID, which is the ID property of a Site.

public void getComplexesByParentID()
{

var theComplexes = client.GetComplexesByParentID(Guid.Parse("PARENT_ID")).Data;

// loop for output to display if desired
foreach (var item in theComplexes)
{

Console.WriteLine(item.Number + "-" + item.Name);
Console.WriteLine(item.ID.ToString() + "\n");

}
}
// returns array of DTOComplex

For more detail about Parent ID properties, see "In Depth: Parent ID Properties at All
Inventory Levels" on page 29.

GetFacilitiesByParentID(Guid id)

The sample code below facilitates identifying a number of desired Facilities out of a list
by getting qualifying Facilities (in this example, up to 100 Facilities that all have the
same Parent ID), then displaying each Facility's number/name and its ID (GUID).

To use this code, you can replace PARENT_ID with the string representation of the ID
property of a Complex, of a Site, or of an Organization.

public void getFacilitiesByParentID()
{
var theFacilities = client.GetFacilitiesByParentID(Guid.Parse("PARENT_ID"), 0, 100).Data;

// loop for output to display if desired
foreach (var item in theFacilities)
{

Console.WriteLine(item.Number + "-" + item.Name);
Console.WriteLine(item.ID.ToString() + "\n");

}
}
// returns array of DTOFacility

For more detail about Parent ID properties, see "In Depth: Parent ID Properties at All
Inventory Levels" on page 29.

- 25 -

GetSystemsByParentID(Guid id)

The example code below facilitates identifying one or a small number of desired Sys-
tems out of a list by getting each qualifying System, then displaying its name and ID
(GUID).

In this code, replace PARENT_ID with a real parent GUID (ID property), which is the
FacilityID property of a System.

public void getSystemsByParentID()
{

var theSystems = client.GetSystemsByParentID(Guid.Parse("PARENT_ID")).Data;

// loop for output to display if desired
foreach (var item in theSystems)
{

Console.WriteLine(item.Name);
Console.WriteLine(item.ID.ToString() + "\n");

}
}
// returns array of DTOSystem

For more detail about Parent ID properties, see "In Depth: Parent ID Properties at All
Inventory Levels" on page 29.

GetComponentsByParentID(Guid id)

The example code below facilitates identifying one or a small number of desired Com-
ponents out of a list by getting each qualifying Component, then displaying its name and
ID (GUID).

In this code, replace PARENT_ID with the string representation of a real parent GUID
(ID property), which is the SystemID property of a Component.

public void getComponentsByParentID()
{

var theComponents = client.GetComponentsByParentID(Guid.Parse("PARENT_ID")).Data;

// loop for output to display if desired
foreach (var item in theComponents)
{

Console.WriteLine(item.Name);
Console.WriteLine(item.ID.ToString() + "\n");

}
}
// returns array of DTOComponent

For more detail about Parent ID properties, see "In Depth: Parent ID Properties at All
Inventory Levels" on page 29.

- 26 -

GetSectionsByParentID(Guid id)

The example code below facilitates identifying one or a small number of desired Sec-
tions out of a list by getting each qualifying Section, then displaying its name and ID
(GUID).

In this code, replace PARENT_ID with the string representation of a real parent GUID
(ID property), which is the ComponentID property of a Section.

public void getSectionsByParentID()
{

var theSections = client.GetSectionsByParentID(Guid.Parse("PARENT_ID")).Data;

// loop for output to display if desired
foreach (var item in theSections)
{

Console.WriteLine(item.Name);
Console.WriteLine(item.ID.ToString() + "\n");

}
}
// returns array of DTOSection

For more detail about Parent ID properties, see "In Depth: Parent ID Properties at All
Inventory Levels" on page 29.

GetSectionDetailsByParentID(Guid id)

The example code below facilitates identifying one or a small number of desired Section
Details out of a list by getting each qualifying Section Detail, then displaying its name
and ID (GUID).

In this code, replace PARENT_ID with the string representation of a real parent GUID
(ID property), which is the SectionID property of a Section Detail.

public void getSectionDetailsByParentID()
{

var theDetails = client.GetSectionDetailsByParentID(Guid.Parse("PARENT_ID")).Data;

// loop for output to display if desired
foreach (var item in theDetails)
{

Console.WriteLine(item.ID.ToString() + "\n");
}

}
// returns array of DTOSectionDetail

Special Case: Getting All of the Sections in a Site

In addition to getting the Sections present in a parent Component, you can also have
the option to get all Sections present in a given Site.

- 27 -

GetSectionsBySiteID(Guid ID, int skip, int take)

The example code below facilitates identifying Sections contained at a given Site, and
can be used to view a page of Sections on the console. Alternatively (not shown), you
can build a loop to accumulate all of the Sections into an array.

To use this code, replace SITE_ID with the string representation of a Site's GUID (ID
property). Adjust the value of the integer showing the starting point (skip) if you iter-
ate the code.

public void getSectionsBySiteID()
{

var theSections = client.GetSectionsBySiteID(Guid.Parse("SITE_ID"), 0, 100).Data;

// output to console to see name and ID of a page of Sections:
foreach (var item in theSections)
{

Console.WriteLine(item.Name);
Console.WriteLine(item.ID.ToString() + "\n");

}
}
// returns array of DTOSection

Display or Store Information

Output to Console

The code to output a property of an inventory item to the console for viewing will be in
this pattern:

Console.WriteLine(array[x].<property>);

where array is the array of DTO objects returned by the call Get<Inventory
level>sByParentID("PARENT_ID"), x is the index number in the array for the
desired inventory object, and <property> is the desired property of the inventory item
that you want shown, such as Name.

Alternatively, use the code pattern below if the property being output is not a string:

Console.WriteLine(array[x].<property>.ToString());

Store a Single Property in a Variable

To store an individual property in a variable, use this code pattern:

var my<property> = array[x].<property>;

where array is the array of DTO objects returned by
Get<Inventory level>sByParentID("PARENT_ID"), and x is the index
number in the array for the desired inventory object.

- 28 -

For example,

var myCI = array[x].CI;

In Depth:
Parent ID Properties at All Inventory Levels

This topic provides, for each inventory level, detailed information about the ParentID
property or its equivalent.

The information is provided here especially to help users specify GUID parameters for
the following methods:

l GetSystemsByParentID(Guid id)
l GetComponentsByParentID(Guid id)
l GetSectionsByParentID(Guid id)
l GetSectionDetailsByParentID(Guid id)

From the System level down through Section Detail, the property name corresponding
to ParentID is different for assets at each level. From Organization through Facility,
the property name is ParentID.

The sections below give detail for each inventory level.

Organization

At this inventory level, the property name is ParentID. The parent of an Organization will
be one of the following:

a. An Organization.
b. Null. If the Organization's ParentID is null, it means the Organization is at the

top of the inventory tree (i.e., is the "root node"). It has no parent, and no sibling.

Site

At this inventory level, the property name is ParentID. The parent of a Site will be of
the following:

- 29 -

a. An Organization.
b. Null. If the Site's ParentID is null, it means the Site is at the top of the inventory

tree (also called "root node"); it has no parent, and no sibling.

Complex

At this inventory level, the property name is ParentID. The parent of a Complex will
always be a Site.

Facility

At this inventory level, the property name is ParentID. The parent of a Facility will be
one of the following:

a. A Complex created and named by a user.
b. The "Unassigned" Complex. A Facility that is not placed in a user-created Complex

can be found via the BUILDER API in the Complex named "Unassigned". In the
BUILDER Web interface, Complexes in the "Unassigned" Complex are displayed dir-
ectly under the Site.

System

At this inventory level, the property name is FacilityID. The parent of a System will
always be a Facility/Building.

Component

At this inventory level, the property name is SystemID. The parent of a Component
will always be a System.

Section

At this inventory level, the property name is ComponentID. The parent of a Section
will always be a Component.

SectionDetail

At this inventory level, the property name is SectionID. The parent of a Section
Detail will always be a Section.

- 30 -

Search for Assets by Name

This topic covers searching for an asset by its name, or by name fragment, which works
only for Organizations, Sites, and Complexes. The topic also discusses how to display or
store desired properties.

If you want to use a different method to get inventory, you can select it from this list of
the top-level options:

l Enter the GUID (ID property) of the asset. Scope: Works at all inventory levels,
and for Section Details.

l Enter the Alternate ID of the asset. Scope: Facilities/Buildings or Sections only.
l Enter the GUID (ID property) of the parent asset. This approach will return all

assets having that parent. Scope: Works at all inventory levels except the root of
the inventory tree.

l Search by Name or name fragment. Scope: Organization and Site only.

This topic explains the last alternative.

About Searching by Name

Scope: Organization, Site, or Complex only.

To search by name, you will need to enter a name or name fragment as the argument.
The string search is not case sensitive.

Note: This way of specifying an asset may return more than one result.

When used with a valid name or name fragment, search by name will get one or more
Organizations if any are found whose name includes the search fragment.

Code Examples: Search by Name

A C# code example is provided below for each level of inventory accommodated.

Short Example

An example of a complete service call is

client.SearchOrganizationNames("aspen");

This will get all Organizations containing the word or word fragment "Aspen" or "aspen".

- 31 -

Sample code immediately below includes code to display ID (GUID) and the full Organ-
ization name to the console. Also, the section "Display or Store Information" on the
facing page explains how to display or store information associated with asset.

SearchOrganizationNames(string nameFragment)

The code below gets each qualifying Organization, stores it in the array orgs, then dis-
plays the ID property (GUID) and name. (GUID is placed first in the console output
because presumably the GUID will always be the same length.)

To use this code, replace NAME_FRAGMENT with your desired search string. Qualifying
Organizations will be those whose Name property contains your desired search string.
The search is not case sensitive.

public void getOrgsByName()
{

var orgs = client.SearchOrganizationNames("NAME_FRAGMENT").Data;

// Optional: display the name and ID of the Org(s) with a colon as the separator
foreach (var org in orgs)
{

Console.WriteLine(org.ID.ToString() + ":" + org.Name);
}
Console.Read();

}
// returns array of DTOOrganization

SearchOrganizationNamesPaged(string nameFragment, int skip, int take)

This call returns a page of DTO objects from an array of DTOOrganization. Replace
NAME_FRAGMENT with your desired search string. (The search is not case sensitive.)

The code sample shown below returns the first 100 results that have a Name property
containing your desired search string (or all of the results, if there are fewer than 100
matches).

public void getPagedOrgsByName()
{

var orgs = client.SearchOrganizationNamesPaged("NAME_FRAGMENT", 0, 100);

// Optional: display the name and ID of the Org(s) with a colon as the separator
foreach (var org in orgs)
{

Console.WriteLine(org.ID.ToString() + ":" + org.Name);
}
Console.Read();

}
// returns paged collection of DTOOrganization

- 32 -

SearchSiteNames(string nameFragment)

The code below gets each qualifying Site, stores it in the array sites, then displays the
ID property (GUID) and name. (GUID is placed first in the console output because pre-
sumably the GUID will always be the same length.)

To use the code, replace NAME_FRAGMENT with your desired search string. Qualifying
Sites will be those whose Name property contains your desired search string. The search
is not case sensitive.

public void getSitesByName()
{

var sites = client.SearchSiteNames("NAME_FRAGMENT").Data;

// Optional: display the name and ID of the Site(s) with a colon as the separator
foreach (var site in sites)
{

Console.WriteLine(site.ID.ToString() + ":" + site.Name);
}
Console.Read();

}
// returns array of DTOSite

SearchComplexNames(string nameFragment)

The code below gets each qualifying Complex, stores it in the array complexes, then
displays the ID property (GUID) and name. (GUID is placed first in the console output
because presumably the GUID will always be the same length.)

To use this code, replace NAME_FRAGMENT with your desired search string. Qualifying
Complexes will be those whose Name property contains your desired search string. The
search is not case sensitive.

public void getComplexesByName()
{

var complexes = client.SearchComplexNames("NAME_FRAGMENT").Data;

// Optional: display name & ID of Complex(es) with a colon as separator
foreach (var complex in complexes)
{

Console.WriteLine(complex.ID.ToString() + ":" + complex.Name);
}
Console.Read();

}
// returns array of DTOComplex

Display or Store Information

Viewing information contained in the selected asset will require being aware of prop-
erties associated with that asset, and doing some coding.

In the code examples below, item represents the DTO instance you are getting.

- 33 -

Output to Console

To output a property to the console for viewing, use this code if the property is a string:

Console.WriteLine(item.<property>);

where item is the instance of the DTO object.

Alternatively, use the code below if the property is not a string:

Console.WriteLine(item.<property>.ToString());

Store a Single Property in a Variable

To store an individual property in a variable, use this code:

var my<property> = item.<property>;

For example,

var myCI = item.CI;

Asset Properties: Building/Facility

This topic presents calls relating to Building properties.

Code Examples: Get Selected Facility Properties

GetFacilityBuildingTypes(int skip, int take)

The values for skip and take in the code below suffice to cover available standard
Building Types provided in BUILDER.

public void getFacilityBuildingTypes()
{

var response = client.GetFacilityBuildingTypes(0, 25);
}
// returns array of DTOFacilityBuildingType

GetFacilityConstructionTypes(int skip, int take)

The values for skip and take in the code below suffice to cover available standard
Construction Types provided in BUILDER.

- 34 -

public void getFacilityConstructionTypes()
{

var response = client.GetFacilityConstructionTypes(0, 25);
}
// returns array of DTOFacilityConstructionType

GetFacilityUseTypes(int skip, int take)

The values for skip and take in the code below suffice to cover available standard
types of Building Use provided in BUILDER.

public void getFacilityUseTypes()
{

var response = client.GetFacilityUseTypes(0, 25);
}
// returns array of DTOFacilityUseType

GetFacilityBuildingStatuses()

You can use this call to see the options available for Building Status. Each of the ele-
ments returned in the array will have an ID, and that ID corresponds to the value of that
status used for the BuildingStatus enum. A description of the BuildingStatus enum can
be found at the entry for "CreateFacility(DTOFacility facility)" on page 43.

The call takes no parameter.

public void getFacilityBuildingStatuses()
{

var response = client.GetFacilityBuildingStatuses();
}
// returns array of DTOBuildingFacilityStatus

Asset Properties: Other than Facility

This topic presents calls relating to properties of BUILDER assets other than at the Facil-
ity level. The calls are of two types:

l Generally, the calls shown below that do not have an ID parameter input serve as
reference resources for lists of asset properties. You can use these calls to show
lists of options for certain asset properties such as Paint Type.

l Other calls relate to retrieving detailed information about a specific property. For
example, GetCMCType is such a call. It receives a parameter indicating which
CMCType you want details about and returns that CMCType object.

Also shown is the call to get a unit of measure (UOM).

- 35 -

Calls you can use to access non-facility asset properties are as follows:

l GetUnitOfMeasure
l GetSystemTypes
l GetComponentTypes
l GetComponentMaterialCategories
l GetMaterialCategoryCMCs
l GetSubComponents
l GetUniformatSection
l GetCMCType
l GetPaintTypes
l GetPaintType

Code Examples: Get Selected Non-Facility Properties

Code examples are in C#.

GetUnitOfMeasure(int measureId)

When a unit of measure (UOM) is specified as a property of an asset, it is the ID of the
unit of measure that is listed. To verify what the UOM corresponding to the ID is, you
can look it up with the GetUnitOfMeasure call.

To use the code below, replace the digit in the parameter with the ID of the UOM you
want to identify.

public void getUnitOfMeasure()
{

var uom = client.GetUnitOfMeasure(105);
}
// returns DTOUnitOfMeasure for the integer provided in the parameter

A full list of UOM IDs is provided in Appendix A.

GetSystemTypes()

This call takes no parameter. The information returned can be used to identify one or
more values to use as parameter for the GetComponentTypes call.

Note: System types are also listed in the first column of Appendix B.

public void getSystemTypes()
{

var response = client.GetSystemTypes();
}
// returns array of DTOSystemType

- 36 -

GetComponentTypes(int SystemTypeID)

Use this call to get the Component types associated with any given System type.

The information returned can be used to identify one or more ComponentTypeID values
to use as parameter for the GetComponentMaterialCategories call, or as the first para-
meter for the GetMaterialCategoryCMCs call.

To use the code below, replace SYS_TYPE_ID with the ID of the System type (DTOSys-
temType) you want to see Component types for. Alternatively, you can use the Sys-
temTypeID property of a given System. If needed, you can get System types using the
call GetSystemTypes.

Note: Component types are also listed in the first column of Appendix C .

public void getComponentTypes()
{

var response = client.GetComponentTypes("SYS_TYPE_ID");
}
// returns array of DTOComponentType

GetComponentMaterialCategories(int ComponentTypeID)

Use this call to get the material categories associated with any given Component type.

Information returned from this call can be used to supply the second parameter of the
call GetMaterialCategoryCMCs.

To use the code below, replace COMP_TYPE_ID with the ID of the Component type
(DTOComponentType) you want material categories for. Alternatively, you can use the
ComponentTypeID property of a given Component. If needed, you can get the Com-
ponent types for any given System type using the call GetComponentTypes.

public void getComponentMaterialCategories()
{

var response = client.GetComponentMaterialCategories("COMP_TYPE_ID");
}
// returns array of DTOSectionMaterialCategory

GetMaterialCategoryCMCs(int ComponentTypeID, int MaterialCategoryID)

This call requires two parameters. The DTOCMCTypes returned in the array will have
properties such as MaterialCategory, UnitOfMeasure, and Com-
ponentSubType.

To use the code shown below,

l Replace COMP_TYPE_ID with the ID of the Component type (DTOCom-
ponentType) you want material category CMCs for. Alternatively, you can use the

- 37 -

ComponentTypeID property of a given Component. If needed, you can get the
Component types for any given System type using the call GetComponentTypes.

l Replace MATERIAL_CATEGORY_ID with the ID property of a Section material cat-
egory (DTOSectionMaterialCategory). If needed, you can get Section material cat-
egories using the call GetComponentMaterialCategories.

public void getMaterialCategoryCMCs()
{

var response = client.GetMaterialCategoryCMCs("COMP_TYPE_ID", "MATERIAL_CATEGORY_ID");
}
// returns array of DTOCMCType

GetSubComponents(int CMC)

The parameter needed for this call is called CMC in the signature, but what you need to
supply is a CMCID.

A CMC type will have a five-digit int CMCID, and there are over 1000 possibilities. Arrays
of CMCID's can be found as properties of DTOSectionTypes.

To use the call given below, replace cmcInt with a valid CMCID.

public void getSubComponents()
{

var response = client.GetSubComponents(cmcInt);
}
// returns array of DTOSubcomponent

GetUniformatSection(string UniformatID)

A Uniformat section will have a four-digit ID, and there are over 600 possibilities. To
obtain a list of Uniformat ID's, see Appendix D. The numbers you want to select from are
the "Component ID" numbers in the first column.

IMPORTANT: For this call, you need to input the UniformatID parameter as
a string.

The code below shows an example UniformatID string; you will need to replace it with
the ID of the Uniformat Section you want to get.

public void getUniformatSection()
{

var response = client.GetUniformatSection("2011");
}
// returns DTOSectionType

- 38 -

GetCMCType(int CMCID)

A CMC type will have a five-digit int CMCID, and there are over 1000 possibilities. For
the parameter, you can find CMCIDs by examining Sections because each Section has a
CMCID property.

To use the sample code, replace CMCID with an actual integer CMCID.

public void getCMCType()
{

var response = client.GetCMCType(CMCID);
}
// returns DTOCMCType

GetPaintTypes()

This is a reference list call that returns an array of all paint types. The call takes no para-
meter.

The output can be used to locate a paint type ID, which is a required parameter for the
call "GetPaintType(int id)" below. Alternatively, there is also an Appendix to this doc-
ument that lists paint type ID numbers.

public void getPaintTypes()
{

var response = client.GetPaintTypes();
}
// returns array of DTOPaintType

GetPaintType(int id)

To get details about a single paint type, you can use this call, supplying the PaintType ID
in the parameter. This ID will be a two- or three-digit integer.

The identifier needed for the parameter for this call can be found in Appendix C, or
obtained from the array returned by"GetPaintTypes()" above.

In the code below, the PaintTypeID of 10 is supplied as an example. The PaintTypeIDs
range from 10 to 420 and are all multiples of 10.

public void getPaintType()
{

var response = client.GetPaintType(10);
}
// returns DTOPaintType

- 39 -

Lock and Unlock Inventory

Using the BUILDER API, you can lock and unlock individual Systems.

An example of when you might do this is when one or more Systems are checked out
and back in to BuilderRED or another remote device designed to assist with taking
BUILDER inventory or performing inspections.

Code Examples: Lock and Unlock Systems

Code examples are in C#.

LockSystem(Guid id)

This call locks a System so that it can not be edited in BUILDER until after the System is
unlocked again.

To use the code shown here, replace SYS_ID with the string representation of a System's
GUID.

public void lockSystem()
{

var response = client.LockSystem(Guid.Parse("SYS_ID"));
}
// returns Boolean: true = unlocked system successfully locked

A return of false from the LockSystem call can mean that an unlocked system has not
been successfully locked, or it can mean that the system was already locked (and still is).

UnlockSystem(Guid id)

This call unlocks a System, such as when it has been locked against editing using the
LockSystem call.

To use the code shown here, replace SYS_ID with the string representation of a System's
GUID.

public void unlockSystem()
{

var response = client.UnlockSystem(Guid.Parse("SYS_ID"));
}
// returns Boolean: true = system successfully unlocked

A return of false from the UnlockSystem call can mean that a locked system has not
been successfully unlocked, or it can mean that the system was already unlocked (and
still is).

- 40 -

Create Inventory

Subject to your BUILDER user permission level and scope, you can add assets from
Organization down through Section Details using BUILDER API.

After you create an asset, you have the option to associate one or more attachments
with it. For this, see "Add Attachment" on page 88.

The "Create" Pattern

The pattern for creating a new instance of an object in the API involves these steps:

1. Declare a new instance of the DTO object, using var.
2. Assign values to the object's properties.
3. Call the create function, where the parameter you pass in is the DTO object

instance that you assigned in Step 1.

Code Examples: Create Inventory

A C# code example for each level of inventory is provided below.

IMPORTANT: In the Create calls, do NOT use a variable (such as "client",
which is used in the majority of the code examples provided) as a sub-
stitute for the service reference name.

Because of the possibility of multiple BUILDER instances, spell out a service
reference name used by your organization when creating a new asset.

CreateOrganization(DTOOrganization org)

To add an Organization to the inventory tree, you will need to write a program to create
an instance of an Organization and assign values to its properties.

Note: If the instance is root of the inventory tree, its ParentID property
is null.

public void createOrganization()
{

// Step 1. Declare new instance of the DTO object
// Actual service reference name is required--no variable
var theOrganization = new <service reference name>.DTOOrganization();

- 41 -

// Step 2. Set properties. Name and number combo must be unique in inventory tree
theOrganization.Name = "new Org";
theOrganization.Number = "01";
theOrganization.ParentID = Guid.Parse("PARENT_ID"); //parent Org's GUID, or null if root

// Step 3. Make the create API call
// where parameter is name of the DTOOrganization instance you created in Step 1
Guid orgGuid = client.CreateOrganization(theOrganization).Data;

}
// returns guid (ID property) of the new organization

CreateSite(DTOSite site)

To add a Site to the inventory tree, you will need to write a program to create an
instance of a Site and assign values to its properties.

Note: If the Site is root of the inventory tree, its ParentID property is
null.

public void createSite()
{

// Step 1. Declare new instance of the DTO object
// Actual service reference name required--no variable
var theSite = new <service reference name>.DTOSite();

// Step 2. Set properties. Name and number combo must be unique in the Org
theSite.Name = "new site";
theSite.Number = "01";
theSite.ParentID = Guid.Parse("PARENT_ID"); // REQUIRED: GUID of parent Org,

//or null if Site is root

// Step 3. Call the create service call
// where the parameter is the name of the instance you created in Step 1.
Guid facGuid = client.CreateSite(theSite).Data

}
// returns guid (ID property) of the new site

CreateComplex(DTOComplex complex)

To add a Complex to the inventory tree, you will need to write a program to create an
instance of DTOComplex and assign values to its properties.

public void createComplex()
{

// Step 1. Declare new instance of the DTO object
var theComplex = new <service reference name>.DTOComplex();

// Step 2. Set desired properties
theComplex.Name = "new comp"; // name and number combo must be unique in the Site
theComplex.Number = "01";
theComplex.ParentID = Guid.Parse("PARENT_ID"); // REQUIRED: GUID of parent Site

// Step 3. Call the create service call
Guid cpxGuid = client.CreateComplex(theComplex).Data;

}
// returns guid (ID property) of the new complex

- 42 -

CreateFacility(DTOFacility facility)

Note: If the Facility has not been placed into a named Complex, it is in the
Complex "Unassigned".

To add a Facility to the inventory tree, you will need to write a program to create an
instance of DTOFacility and assign values to its properties.

The value to use for the required ComplexID property will depend on whether the
Facility has been placed into a named Complex:

l If the Facility has been placed into a named Complex, then the value needs to be
the GUID of that Complex.

l If it has not, then you need to use the value for the "Unassigned" Complex. One
way (but not the only way) to find this value is to run the call GetCom-
plexesByParentID. For the parameter, use the GUID of the Site that will contain
the new Facility. In the results, look for the Complex with the value "Unassigned"
for the Name property.

The value to use for the required property BuildingStatus is governed by the Build-
ingStatus enum, which maps values to status choices as follows:

1 = Active

2 = Vacant

3 = ToBeTransferred

4 = ToBeDemolished

5 = ToBeAcquired

6 = ToBeBuilt

7 = Transferred

8 = Demolished

9 = Non-Functional

10 = Semi-Active

11 = Excess

12 = Caretaker

13 = Closed

14 = Outgranted

- 43 -

15 = Surplus

16 = Environmental Hold

17 = Disposed

If no definition is found, the status of this property will be null.

public void createFacility()
{

// Step 1. Declare new instance of the DTO object
var theFacility = new <service reference name>.DTOFacility();

// Step 2. Set desired properties
theFacility.Name = "new fac"; //name and number combo must be unique in the Site
theFacility.Number = "01";
theFacility.ComplexID = Guid.Parse("CPX_ID"); // REQUIRED: GUID of parent Complex

// Step 3. Call the create service call
Guid facGuid = client.CreateFacility(theFacility).Data;

}
// returns guid (ID property) of the new facility

CreateSystem(DTOSystem system)

To add a System to the inventory tree, you will need to write a program to create an
instance of a System and assign values to its properties.

public void createSystem()
{

// Step 1. Declare new instance of the DTO object
var theSystem = new <service reference name>.DTOSystem();

// for the above, actual service reference name required--no variable

// Step 2. Set desired properties
theSystem.Name = "new system";
theSystem.FacilityID = Guid.Parse("FAC_ID"); // REQUIRED: GUID of parent Facility

// Step 3. Call the create service call
Guid sysGuid = client.CreateSystem(theSystem).Data;

}
// returns guid (ID property) of the new system

CreateComponent(DTOComponent component)

To add a Component to the inventory tree, you will first need to write a program to cre-
ate an instance of a Component and assign values to its properties.

public void createComponent()
{

// Step 1. Declare new instance of the DTO object
// -->must use actual service reference name, not variable
var theComponent = new <service reference name>.DTOComponent();

- 44 -

// Step 2. Set desired properties
theComponent.Name = "new comp"; // name must be unique in the System
theComponent.SystemID = Guid.Parse("SYS_ID"); // REQUIRED: GUID of parent System
// Step 3. Call the create service call
Guid CompGuid = client.CreateComponent(theComponent).Data

}
// returns guid (ID property) of the new component

CreateSection(DTOSection section)

To add a Section to the inventory tree, you will need to write a program to create an
instance of a Section and assign values to its properties.

public void createSection()
{

// Step 1. Declare new instance of the DTO object
var theSection = new <service reference name>.DTOSection();

// for the above, actual service reference name required--no variable

// Step 2. Set desired properties
theSection.Name = "new sec"; //name must be unique in the Component
theSection.ComponentID = Guid.Parse("COMP_ID"); // REQUIRED: GUID of parent Component

// Step 3. Call the create service call
Guid secGuid = client.CreateSection(theSection).Data;

}
// returns guid (ID property) of the new section

CreateSectionDetail(DTOSectionDetail detail)

To add a Section Detail to the inventory tree, you will need to write a program to create
an instance of a Section Detail and assign values to its properties.

public void createSectionDetail()
{

// Step 1. Declare new instance of DTO object
var SectionDetail = new <service reference name>.DTOSectionDetail();

// for the above, actual service reference name required--no variable

// Step 2. Set desired properties
SectionDetail.SectionID = (Guid.Parse("SEC_ID")); // REQUIRED: GUID of parent Section

// Step 3. Call the create service call
Guid orgGuid = client.CreateSectionDetail(theSectionDetail).Data;

}
// returns guid (ID property) of the new section detail

- 45 -

Update Inventory

Subject to your BUILDER user permission level and scope, you can update inventory
from Organization down through Section Details using BUILDER API.

The "Update" Pattern

The pattern for updating an asset or an instance of another object in the API involves
these steps:

1. Declare a new instance of the DTO object, using var.
2. Call the get function, using the GUID of the thing you want to update, and set the

new instance equal to what the get function returns. This populates the new
instance with the data currently in the thing to be updated.

3. Assign new values to properties you want to change (or add additional prop-
erties).

4. Call the update function with the variable name of the new DTO object instance
(as declared in Step 1) as the parameter.

An example of Step 4 is

var response = client.UpdateFacility(theFacility);

There are ways to make the update code more elegant or compact–for example, the
first two steps can be combined into one complex call–but the four steps above are
used for the inventory code examples for simplicity and clarity.

Code Examples: Update Inventory

A C# code example for each level of inventory is provided below.

UpdateOrganization(DTOOrganization org)

To use the code below, replace ORG_ID with the string representation of an Organ-
ization's GUID and set appropriate properties.

public void updateOrganization()
{

//Step 1. Declare new instance of DTO object
// Actual service reference name is required here--no variable
var theOrganization = new <service reference name>.DTOOrganization();

- 46 -

//Step 2. Populate it using the get function
theOrganization = client.GetOrganization(Guid.Parse("ORG_ID")).Data;

//Step 3. Assign new values to properties that you want to change, for EXAMPLE:
theOrganization.Name = "<new org name>";

//Step 4. Call update function with the new DTO instance as the parameter
var response = client.UpdateOrganization(theOrganization);

//Optional error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = successful update

UpdateSite(DTOSite site)

To use the code below, replace SITE_ID with the string representation of a Site's GUID
and set appropriate properties:

public void updateSite()
{

//Step 1. Declare new instance of DTO object
var theSite = new <service reference name>.DTOSite();

//Step 2. Populate it using the get function
theSite = client.GetSite(Guid.Parse("SITE_ID")).Data;

//Step 3. Assign new values to properties that you want to change, for EXAMPLE:
theSite.Name = "<new site name>";

//Step 4. Call update function with the new DTO instance as the parameter
var response = client.UpdateSite(theSite);

//error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = successful update

UpdateComplex(DTOComplex complex)

To use the code below, replace CPX_ID with the string representation of a Complex's
GUID and set appropriate properties.

public void updateComplex()
{

//Step 1. Declare new instance of DTO object
var theComplex = new <service reference name>.DTOComplex();

//Step 2. Populate it using the get function
theComplex = client.GetComplex(Guid.Parse("CPX_ID")).Data;

//Step 3. Assign new values to properties that you want to change, for EXAMPLE:
theComplex.Name = "<new complex name>";

- 47 -

//Step 4. Call update function with the new DTO instance as the parameter
var response = client.UpdateComplex(theComplex);

//Optional error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = successful update

UpdateFacility(DTOFacility facility)

To use the code below, replace FAC_ID with the string representation of a Facility's
GUID and set appropriate properties.

public void updateFacility()
{

//Step 1. Declare new instance of DTO object
var theFacility = new <service reference name>.DTOFacility();

//Step 2. Populate it using the get function
theFacility = client.GetFacility(Guid.Parse("FAC_ID")).Data;

//Step 3. Assign new values to properties that you want to change, for EXAMPLE:
theFacility.Name = "<new facility name>";

//Step 4. Call update function with the new DTO instance as the parameter
var response = client.UpdateFacility(theFacility);

//Optional error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = successful update

UpdateFacility(DTOFacility facility, bool preserveExistingRecords)

Note: Sometimes referred to as UpdateFacilityPreserveExistingRecords.

Currently this call is coded to work the same as the standard UpdateFacility(DTOFacility
facility) call. If you do decide to use this version of the UpdateFacility call, the Facility
will need to be in a named Complex (not the "Unassigned" Complex) for this call to
work.

UpdateSystem(DTOSystem system)

To use the code below, replace SYS_ID with the string representation of a System's GUID
and set appropriate properties.

public void updateSystem()
{

//Step 1. Declare new instance of DTO object
// Actual service reference name is required here--no variable
var theSystem = new <service reference name>.DTOSystem();

- 48 -

//Step 2. Populate it using the get function
theSystem = client.GetSystem(Guid.Parse("SYS_ID")).Data;

//Step 3. Assign new values to properties that you want to change, for EXAMPLE:
theSystem.Name = "<new system name>";

//Step 4. Call update function with the new DTO instance as the parameter
var response = client.UpdateSystem(theSystem);

//Optional error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = successful update

UpdateComponent(DTOComponent component)

To use the code below, replace COMP_ID with the string representation of a Com-
ponent's GUID and set appropriate properties.

public void updateComponent()
{

//Step 1. Declare new instance of DTO object
var theComponent = new <service reference name>.DTOComponent();

//Step 2. Populate it using the get function
theComponent = client.GetComponent(Guid.Parse("COMP_ID")).Data;

//Step 3. Assign new values to properties that you want to change, for EXAMPLE:
theComponent.Name = "<new component name>";

//Step 4. Call update function with the new DTO instance as the parameter
var response = client.UpdateComponent(theComponent);

//Optional error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = successful update

UpdateSection(DTOSection section)

To use the code below, replace SEC_ID with the string representation of a Section's
GUID and set appropriate properties.

public void updateSection()
{

//Step 1. Declare new instance of DTO object
var theSection = new <service reference name>.DTOSection();

//Step 2. Populate it using the get function
theSection = client.GetSection((Guid.Parse("SEC_ID")).Data;

//Step 3. Assign new values to properties that you want to change, for EXAMPLE:
theSection.Name = "<new section name>";

- 49 -

//Step 4. Call update function with the new DTO instance as the parameter
var response = client.UpdateSection(theSection);

//Optional error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = successful update

UpdateSectionDetail(DTOSectionDetail detail)

To use the code below, replace SEC_DETAIL_ID with the string representation of a Sec-
tion Detail's GUID and set appropriate properties:

public void updateSectionDetail()
{

//Step 1. Declare new instance of DTO object
var theSectionDetail = new <service reference name> DTOSectionDetail();

//Step 2. Populate it using the get function
theSectionDetail = client.GetSectionDetail(Guid.Parse("SEC_DETAIL_ID")).Data;

//Step 3. Assign new values to properties that you want to change, for EXAMPLE:
theSection.Name = "<new section detail name>";

//Step 4. Call update function with the new DTO instance as the parameter
var response = client.UpdateSectionDetail(theSectionDetail);

//Optional error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = successful update

Updating Attachments

To update an asset's attachment image(s), you will need to delete the old attachment
and add the new attachment. For deleting an attachment, see "DeleteAttachment(Guid
attachmentId)" on page 92. For adding attachments, see AddAttachment (if the attach-
ment is a .bmp file) or AddAttachmentWithFileExtension.

Inventory Rollup

Rolling up inventory will accumulate upwards the aggregate amount of Replacement
Cost. Rollup will also aggregate the performance metrics upwards through the tree.

Scope: Inventory rollup can be done at three different levels: Global (the entire invent-
ory tree); Site; or Facility.

- 50 -

##Add-bmp
##Add-attch

Rollups assign a GUID to the rollup performed, and this is what is returned by an Ini-
tiate<Level>Rollup call, where <Level> is Global, Site, or Facility. The Guid can then be
fed into the GetRollupStatus call.

Code Examples: Rollup Options

Code examples are in C#.

Note: In each of the rollups described below (Global Rollup, Site Rollup,
and Facility Rollup), the rollup examples already include code that imple-
ments the GetRollupStatus call to display the rollup state on the console.

InitiateGlobalRollup()

Permissions Note: Global rollup can be performed only by a BUILDER
Administrator.

Here is the code to perform a global rollup. This call has no parameters.

public void initiateGlobalRollup()
{

// use InitiateGlobalRollup to get the guid for the rollup
Guid rollupGuid = client.InitiateGlobalRollup().Data;

// display rollup status on console
Console.WriteLine(client.GetRollupStatus(rollupGuid).Data);
Console.Read();

}

InitiateSiteRollup(Guid id)

To use the code below to roll up a Site, replace SITE_ID with the string representation of
the Site's GUID.

public void initiateSiteRollup()
{

// use InitiateSiteRollup to get the guid for the rollup
Guid rollupGuid = client.InitiateSiteRollup(Guid.Parse("SITE_ID"));

// display rollup status on console
Console.WriteLine(client.GetRollupStatus(rollupGuid).Data);
Console.Read();

}

- 51 -

InitiateFacilityRollup(Guid id)

To use the code below to roll up a Facility, replace FAC_ID with the string representation
of a Facility's GUID.

public void initiateFacilityRollup()
{

// use InitiateFacilityRollup to get the guid of the rollup
Guid rollupGuid = client.InitiateFacilityRollup(Guid.Parse("FAC_ID"));

// display rollup status on console
Console.WriteLine(client.GetRollupStatus(rollupGuid).Data);
Console.Read();

}

Code Example: Get Rollup Status

Code examples are in C#.

Note: In each of the rollups described above (Global Rollup, Site Rollup,
and Facility Rollup), the rollup examples already include code that imple-
ments the GetRollupStatus call to display the rollup state on the console.

GetRollupStatus(Guid id)

The call for getting the status (state) of a rollup is:

var status = client.GetRollupStatus(<GUID of rollup>);

The call returns the rollup state, which can be "Running", "Completed", "Failed", or
"NotFound".

Fuller code examples with console output can be found as part of the code examples for
initiating rollups.

Delete Inventory

Subject to your BUILDER user permission level and scope, you can delete assets from
Organization down through Section Details using BUILDER API.

Precautions

WARNING: Deleting an asset deletes all inventory contained in that asset.
For example, deleting a Site will delete all inventory (Complexes, Buildings,

- 52 -

Systems, Components, and Sections) in that Site. Deletion is a significant
step to take and should only be done when certain that you wish to clear
the entire inventory of the selected asset.

Best Practice Recommendation: Where a Building/Facility is involved, you
have the alternative to change the Facility's Building Status property
instead of deleting the Facility (see details at "DeleteFacility(Guid id)" on
the next page). For all asset levels, making frequent backups of the invent-
ory database will protect you from significant data losses if an unintended
deletion is performed.

Code Examples: Delete Inventory

A C# code example for each level of inventory is provided below.

Each of these calls returns a Boolean indicating whether the asset was deleted (true), or
either not deleted or not found (false). Another way to confirm that the asset is deleted
or not present is to follow the Delete call with a GetOrganization, GetSite, GetComplex,
GetFacility, GetSystem, GetComponent, GetSection, or GetSectionDetail API call–you
should receive an error message as a property of the service response.

DeleteOrganization(Guid id)

WARNING: Deleting an Organization will also delete all inventory (Com-
plexes, Buildings, Systems, Components, and Sections) in that Organization.
This is a significant step to take and should only be done when you are cer-
tain that you wish to clear the entire inventory of the Organization you
have selected.

Replace ORG_ID with the string representation of an Organization's GUID to delete the
Organization.

public void deleteOrganization()
{

var response = client.DeleteOrganization(Guid.Parse("ORG_ID"));
}
// returns Boolean: true = organization deleted

DeleteSite(Guid id)

WARNING: Deleting a Site deletes all inventory (Complexes, Buildings, Sys-
tems, Components, and Sections) in that Site. This is a significant step to
take and should only be done when certain that you wish to clear the
entire inventory of the selected Site.

Replace SITE_ID with the string representation of a Site's GUID to delete the Site.

- 53 -

public void deleteSite()
{

var response = client.DeleteSite(Guid.Parse("SITE_ID"));
}
// returns Boolean: true = site deleted

DeleteComplex(Guid id)

WARNING: Deleting a Complex deletes all inventory (Buildings, Systems,
Components, and Sections) in the Complex. This is a significant step to take
and should only be done when you are certain that you wish to clear the
entire inventory of the Complex you have selected.

Replace CPX_ID with the string representation of a Complex's GUID to delete the Com-
plex.

public void deleteComplex()
{

var response = client.DeleteComplex(Guid.Parse("CPX_ID"));
}
// returns Boolean: true = complex deleted

DeleteFacility(Guid id)

WARNING: Deleting a Building deletes all the inventory (Systems, Com-
ponents, and Sections) in the Building. This is a significant step to take and
should only be done when you are certain that you wish to clear the entire
inventory of the Building you have selected.

Best Practice Recommendation: Instead of deleting a Building, you can use
the Current Status property to mark Buildings that have been demolished
or transferred to another owner. With this method, the Building's records
remain in the database, but the Building is ignored in processes that should
only consider current buildings. To change the Building Status, you can first
use the call "GetFacilityBuildingStatuses()" on page 35 to see the Building
Status options available, then use "UpdateFacility(DTOFacility facility)" on
page 48 to set the Facility's BuildingStatus property to the desired
value.

Replace FAC_ID with the string representation of a Facility's GUID to delete the Facility.

public void deleteFacility()
{

var response = client.DeleteFacility(Guid.Parse("FAC_ID"));
}
// returns Boolean: true = facility deleted

- 54 -

DeleteSystem(Guid id)

WARNING: Deleting a System will delete all inventory (Components and
Sections) in the System. This is a significant step to take and should only be
done when you are certain that you wish to clear the entire inventory of
the System you have selected.

Replace SYS_ID with the string representation of a System's GUID to delete the System.

public void deleteSystem()
{

var response = client.DeleteSystem(Guid.Parse("SYS_ID"));
}
// returns Boolean: true = system deleted

DeleteComponent(Guid id)

WARNING: Deleting a Component will delete all Sections in the Com-
ponent. Be sure that you wish to take this action. This is a significant step
to take and should only be done when you are certain that you wish to
clear the entire inventory of the Component you have selected.

Replace COMP_ID with the string representation of a Component's GUID to delete the
Component.

public void deleteComponent()
{

var response = client.DeleteComponent(Guid.Parse("COMP_ID"));
}
// returns Boolean: true = component deleted

DeleteSection(Guid id)

Replace SEC_ID with the string representation of a Section's GUID to delete the Section.

public void deleteSection()
{

var response = client.DeleteSection(Guid.Parse("SEC_ID"));
}
// returns Boolean: true = section deleted

DeleteSectionDetail(Guid id)

Replace SEC_DETAIL_ID with a Section Detail's GUID to delete the Section Detail.

public void deleteSectionDetail()
{

var response = client.DeleteSectionDetail(Guid.Parse("SEC_DETAIL_ID"));
}
// returns Boolean: true = section detail deleted

- 55 -

INVENTORY COST MODIFIERS

Cost modifiers allow bulk modification of expected inventory cost to reflect local or spe-
cial situations such as remote location, high security site, or material shortages.

Subject to your BUILDER user permission level and scope, you can create cost modifiers
and specify cost modifier assignments at most levels of inventory. This chapter covers
manipulating inventory cost modifiers and inventory cost modifier assignments through
the BUILDER API.

About Inventory Cost Modifiers
Cost modifiers allow bulk modification of expected inventory cost to reflect local or spe-
cial situations such as remote location, high security site, or material shortages.

There are two types of cost modifers: cost adders, and cost multipliers.

l A cost adder will add a fixed cost to each inventory item at the specified inventory
level, within the scope specified

l A cost multiplier will multiply the cost of each inventory item within the scope by
a specified amount, such as by 1.2

To be used, a cost modifier needs to be created, and then assigned to the appropriate
inventory.

About Inventory Cost Modifier Assignments
After a cost modifier has been created, it can be assigned to appropriate inventory.

Cost Modifier Service Calls
Using BUILDER API, you can perform the following functions related to inventory cost
modifiers:

l Get available modifiers
l Create a modifier
l Update a modifier
l Delete a modifier
l Get modifier assignments
l Create a modifier assignment

- 56 -

l Update a modifier assignment
l Delete a modifier assignment

Other actions related to modifiers have to do with the "libraries" of available modifiers.
These actions, which typically require more advanced BUILDER permissions, are:

l Get a modifier library
l Create a modifier library
l Update a modifier library
l Delete a modifier library

These other actions are described in "Cost Modifier Libraries " on page 101.

Get Available Cost Modifiers

Using the BUILDER API, you can get the inventory cost modifiers that are available for
any given asset at a level from Site down through Section. This topic lists the service
calls for getting these available cost modifiers in the scope you provide, the scope being
defined by the GUID of an asset.

To get the cost modifier that have already been assigned to a given asset, see "Get Cost
Modifier Assignments" on page 64.

Scope: Works at inventory levels Site through Section.

To get the cost modifiers available for an asset, you will first need to enter the value con-
tained in the asset's ID property/GUID as the argument to one of the following meth-
ods:

l GetAvailableModifiersBySite
l GetAvailableModifiersByComplex
l GetAvailableModifiersByFacility
l GetAvailableModifiersBySystem
l GetAvailableModifiersByComponent
l GetAvailableModifiersBySection

These service calls will get the cost modifiers available to be associated with the GUID
provided in the parameter. See the section "Get Available Cost Modifiers " above below
for how to create code to display the available modifiers.

- 57 -

The availability of cost modifiers is governed by the cost modifier libraries. Users with
sufficient permissions can get, add, update, or delete cost modifier libraries as described
in "Cost Modifier Libraries " on page 101.

Code Examples: Get Available Cost Modifiers

A C# code example is provided below for each level of inventory accommodated.

General Model

The call examples provided below are in the format

var item = client.getAvailableModifiersBy<Inventory level>(Guid.Parse("<Inventory level>_ID"));

GetAvailableModifiersBySite(Guid id)

This code gets an array of all available inventory cost modifiers for a given Site and
stores it in an instance of DTOCostModifier[] named "siteModifiers".

To use this code, replace SITE_ID with the string representation of a Site's GUID:

public void getAvailableModifiersBySite()
{

var siteModifiers = client.getAvailableModifiersBySite(Guid.Parse("SITE_ID));
}
// returns (service response) array of DTOCostModifier

GetAvailableModifiersByComplex(Guid id)

This code gets the array of available inventory cost modifiers for a given Complex and
stores it in an instance of DTOCostModifier[] named "complexModifiers".

To use this code, replace CPX_ID with the string representation of a Complex's GUID:

public void getAvailableModifiersByComplex()
{

var complexModifiers = client.GetAvailableModifiersByComplex(Guid.Parse("CPX_ID"));
}
// returns (service response) array of DTOCostModifier

GetAvailableModifiersByFacility(Guid id)

This code gets the array of available inventory cost modifiers for a given Facility and
stores it in an instance of DTOCostModifier[] named "facilityModifiers".

To use this code, replace FAC_ID with a Facility's GUID:

- 58 -

public void getAvailableModifiersByFacility()
{

var facilityModifiers = client.GetAvailableModifiersByFacility(Guid.Parse("FAC_ID"));
}
// returns (service response) array of DTOCostModifier

GetAvailableModifiersBySystem(Guid id)

This code gets the array of available inventory cost modifiers for a given System and
stores it in an instance of DTOCostModifier[] named "systemModifiers".

To use this code, replace SYS_ID with the string representation of a System's GUID:

public void getAvailableModifiersBySystem()
{

var systemModifiers = client.GetAvailableModifiersBySystem(Guid.Parse("SYS_ID"));
}
// returns (service response) array of DTOCostModifier

GetAvailableModifiersByComponent(Guid id)

This code gets the array of available inventory cost modifiers for a given Component and
stores it in an instance of DTOCostModifier[] named "componentModifiers".

To use this code, replace COMP_ID with the string representation of a Component's
GUID:

public void getAvailableModifiersByComponent()
{
var componentModifiers = client.GetAvailableModifiersByComponent(Guid.Parse("COMP_ID"));

}
// returns (service response) array of DTOCostModifier

GetAvailableModifiersBySection(Guid id)

This code gets the array of available inventory cost modifiers for a given Section and
stores it in an instance of DTOCostModifier[] named "sectionModifiers".

To use this code, replace SEC_ID with the string representation of a Section's GUID:

public void getAvailableModifiersBySection()
{

var sectionModifiers = client.GetAvailableModifiersBySection(Guid.Parse("SEC_ID"));
}
// returns (service response) array of DTOCostModifier

- 59 -

Create Cost Modifier

Subject to your BUILDER user permission level and scope, you can update cost modifiers
and their assignments at the Organization level and at the Facility level down through
Section level using BUILDER API.

Scope: Works at inventory levels Organization, Facility, System, Component, and Sec-
tion. The call for creating cost modifiers is available for use in the same scope as the set
of calls that collectively get available modifiers (as described in "Get Available Cost Modi-
fiers " on page 57): all inventory levels from Site through Section.

Instead of using a different API call for each applicable level of inventory, to create a
cost modifier you will (1) pass in a name for the modifier, then (2) specify at what invent-
ory level it applies and (3) specify whether it is an Adder or Multiplier.

With respect to the inventory level, a cost modifier that is at the System level can only
be assigned to a System, and so forth. (see "Create Cost Modifier Assignment" on
page 66.) The action of the modifier will be applied to every Section below the asset to
which it is assigned.

The two types of cost modifier are Adder andMultiplier. A sample Adder might have a
ModifierValue property of 1, which would add a dollar to the cost of each asset. A
sample Multiplier might have a ModifierValue property of 1.2, which would increase the
cost of each asset by twenty percent.

Code Example: Create Cost Modifier

A C# code example is provided below for how to create any level of cost modifier.

CreateModifier(DTOCostModifier costModifier)

When you create a cost modifier using the CreateModifier call, you will specify the
desired inventory level by setting one of the new modifier's properties rather than by
using different versions of the call for different inventory levels.

Note: Additional cost modifier properties are shown at the description of
the UpdateModifier call.

Verbose version

This copy of the process to create a cost modifier is fully commented, and includes
sample property strings.

- 60 -

public void createModifier()
{

//declare new instance
var newModifier = new <service reference name>.DTOCostModifier();

//set desired properties;
//the first three shown here are the absolute minimum for BUILDER API validation
newModifier.ModifierName = "add1dollar";
newModifier.CostModLevelName = "Section"; // CostModLevelName should be

// "Section" "Component" "System" "Building" "Complex" or "Site"
newModifier.CostModTypeName = "Adder"; // Should be "Adder" or "Multiplier"
newModifier.ModifierValue = 1;
newModifier.ModifierDescription = "DESCRIPTION TEXT";
newModifier.CustomFlag = false; //true or false
newModifier.IsActive = true; //true or false

var response = client.CreateModifier(newModifier).Data;
}
// returns guid of the new modifier

Lean version

This version is the code without most of the comments, and without sample property
names.

public void createModifier()
{

var newModifier = new <service reference name>.DTOCostModifier();

newModifier.ModifierName = "ENTER NAME HERE";
newModifier.CostModLevelName = "ENTER VALUE HERE"; // CostModLevelName should be

// "Section" "Component" "System" "Building" "Complex" or "Site"
newModifier.CostModTypeName = "ENTER VALUE HERE"; // "Adder" or "Multiplier"
newModifier.ModifierValue = 1;

var response = client.CreateModifier(newModifier);
}

Update Cost Modifier

Subject to your BUILDER user permission level and scope, you can update cost modifiers
and their assignments at the Organization level and at the Facility level down through
Section level using BUILDER API. For updating a cost modifier assignment, see "Update
Cost Modifier Assignment" on page 68.

Scope: Works at inventory levels Organization, Facility, System, Component, and Sec-
tion.

Use this call to change the values of properties in an instance of DTOCostModifier.

- 61 -

Code Example: Update Cost Modifier

A C# code example is provided below for how to update any level of cost modifier.

UpdateModifier(DTOCostModifier costModifier)

Use this call to make additions or modifications to an existing cost modifier.

If you need to change the inventory asset level that the cost modifier is associated with
(assuming that a cost modifier of that name is available at the new level in the cost mod-
ifier library), here are the integers that can be used as values for the
CostModLevelId property:

1 = Section

2 = Component

3 = System

4 = Building

5 = Complex

6 = Site

Note: When you create a cost modifier, you enter the inventory level that
the modifier applies to using a string name such as "Section" or "Complex"
for the CostModLevelName property. By contrast, when you update a
cost modifier, you enter an integer value for the CostModLevelId prop-
erty. (CostModTypeName remains the same for both calls.)

There are multiple ways to identify the GUID of the modifier to be updated. The code
below uses the approach of getting a modifier list and selecting one of the modifiers in
that list.

To use the code, replace MOD_LIST_ID with the GUID of the modifier list containing the
modifier you want to update.

public void updateModifier()
{

//currently (2022) API has no GetModifier call, so get the modifier list
var theModifiers = client.GetModifierList(Guid.Parse("MOD_LIST_ID"));

//create new instance
var updateMod = new <service reference name>.DTOCostModifier();

//before using next line, decide which modifier in list to populate the new instance with
updateMod = theModifiers.Data[0]; // using the first modifier here as example

- 62 -

//add properties or change property values as needed; for example:
updateMod.ModifierValue = "UPDATE VALUE HERE";
updateMod.CostModLevelId = "INT VALUE"; //int value 1-6
updateMod.ModifierDescription = "NEW DESCRIPTION";

var response = client.UpdateModifier(updateMod);

//error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = update successful

Delete Cost Modifier

Subject to your BUILDER user permission level and scope, you can delete cost modifiers
and their assignments at the Organization level and at the Facility level down through
Section level using BUILDER API.

Code Example: Delete Cost Modifier

A C# code example is provided below for how to delete any level of cost modifier.

DeleteModifier(Guid id)

To use the code below, replace COST_MOD_ID with the string representation of a cost
modifier's GUID to delete a modifier.

After the call succeeds, the deleted cost modifier will no longer be available for assign-
ment within the scope specified in the parameter.

Note: Depending on your needs, a potential alternative to deleting is to
use the "UpdateModifier(DTOCostModifier costModifier)" on the previous
page call to set the modifier's IsActive property to false.

public void deleteModifier()
{

var response = client.DeleteModifier(Guid.Parse("COST_MOD_ID"));
}
// returns Boolean: true = modifier deleted

- 63 -

Get Cost Modifier Assignments

Using the BUILDER API, you can get the cost modifiers that have been applied to any
asset from Site down through Section. This topic lists the service calls for getting the
assignments applicable to the scope you provide, the scope being the GUID of an asset.

To instead get the cost modifiers that are available at a given inventory level, see "Get
Available Cost Modifiers " on page 57.

Scope: Works at the Organization level, and at inventory levels Facility through Section.

To get the cost modifiers that have been assigned to a given asset (inventory item), you
will first need to enter the value in the asset's ID property as the argument to one of
the following methods:

l GetModifierAssignmentsByOrg
l GetModifierAssignmentsByFacility
l GetModifierAssignmentsBySystem
l GetModifierAssignmentsByComponent
l GetModifierAssignmentsBySection

These service calls will get the cost modifier assignments associated with the GUID
provided in the parameter. See the section Display or Store Information below for how
to create code to display the assignments.

Code Examples: Get Cost Modifier Assignments

A C# code example is provided below for each level of inventory accommodated.

General Model

The code examples provided below are in the format

var item = client.getModifierAssignmentsBy<Inventory level>(Guid.Parse("<Inventory level>_ID"));

GetModifierAssignmentsByOrg(Guid id)

This code gets the cost modifier assignments for a given Organization and stores them in
an array named "orgModAssignments".

To use this code, replace ORG_ID with the string representation of a real Organization's
GUID.

- 64 -

public void getModifierAssignmentsByOrg()
{

var orgModAssignments = client.GetModifierAssignmentsByOrg(Guid.Parse("ORG_ID"));
}
// returns (service response) array of DTOCostModifierAssignment

GetModifierAssignmentsByFacility(Guid id)

This code gets the cost modifier assignments for a given Facility and stores them in an
array named "facModAssignments".

To use this code, replace FAC_ID with the string representation of a Facility's GUID.

public void getModifierAssignmentsByFacility()
{

var facModAssignments = client.GetModifierAssignmentsByFacility(Guid.Parse("FAC_ID"));
}
// returns (service response) array of DTOCostModifierAssignment

GetModifierAssignmentsBySystem(Guid id)

This code gets the inventory cost modifiers for a given System and stores them in an
array named "sysModAssignments".

To use this code, replace SYS_ID with the string representation of a System's GUID.

public void getModifierAssignmentsBySystem()
{

var sysModAssignments = client.GetModifierAssignmentsBySystem(Guid.Parse("SYS_ID"));
}
// returns (service response) array of DTOCostModifierAssignment

GetModifierAssignmentsByComponent(Guid id)

This code gets the cost modifier assignments for a given Component and stores them in
an array named "compModAssignments".

To use this code, replace COMP_ID with the string representation of a Component's
GUID.

public void getModifierAssignmentsByComponent()
{
var compModAssignments=client.GetModifierAssignmentsByComponent(Guid.Parse("COMP_ID"));

}
// returns (service response) array of DTOCostModifierAssignment

GetModifierAssignmentsBySection(Guid id)

This code gets the cost modifier assignments for a given Section and stores them in an
array named "secModAssignments".

To use this code, replace SEC_ID with the string representation of a Section's GUID.

- 65 -

public void getModifierAssignmentsBySection()
{

var secModAssignments = client.GetModifierAssignmentsBySection(Guid.Parse("SEC_ID"));
}
// returns (service response) array of DTOCostModifierAssignment

Create Cost Modifier Assignment

Scope: Works at inventory levels Organization, Facility, System, Component, and Sec-
tion.

To assign a cost modifier to an asset, you will specify the asset's ID and the cost mod-
ifier's ID.

The action of the modifier will be applied to every Section below the asset to which it is
assigned.

You can only assign a System level cost modifier to a System, and so forth. Therefore,
you need to be aware of the cost modifier's level, whether it is "Section" "Component"
"System" "Building" "Complex" or "Site", and use the call for the appropriate level:

l CreateModifierAssignmentByOrg
l CreateModifierAssignmentByFacility
l CreateModifierAssignmentBySystem
l CreateModifierAssignmentByComponent
l CreateModifierAssignmentBySection

Code Examples: Create Cost Modifier Assignments

A C# code example is provided below for each level of inventory accommodated.

General Model

The pattern for creating a cost modifier assignment in the API is to

1. Create a [Guid] variable to hold the ID of the Organization.
2. Create a [Guid] variable to hold the ID of the modifier.
3. (Optional) If a comment is desired, create a variable to hold the comment string.
4. Make the API call.

CreateModifierAssignmentByOrg(Guid orgId, Guid modId, string comment)

Pair an Organization's ID with a cost modifier ID using this call.

- 66 -

public void CreateOrgModAssignment()
{

// create variables to hold ORG_ID; MOD_ID; and, optionally, a comment
var orgId = Guid.Parse("ORG_ID");
var modId = Guid.Parse("MOD_ID");
var comment = "OPTIONAL COMMENT TEXT";

var response = client.CreateModifierAssignmentByOrg(orgId, modId, comment);
}
// returns guid of the assignment

CreateModifierAssignmentByFacility(Guid facId, Guid modId, string com-
ment)

Pair a Facility's ID with a cost modifier ID using this call.

public void CreateFacModAssignment()
{

// create variables to hold FAC_ID, MOD_ID, and, optionally, a comment
var facId = Guid.Parse("FAC_ID");
var modId = Guid.Parse("MOD_ID");
var comment = "OPTIONAL COMMENT TEXT";

var response = client.CreateModifierAssignmentByFacility(facId, modId, comment);
}
// returns guid of the assignment

CreateModifierAssignmentBySystem(Guid sysId, Guid modId, string com-
ment)

Pair a System's ID with a cost modifier ID using this call.

public void createSystemModAssignment()
{

// create variables to hold SYS_ID, MOD_ID, and, optionally, a comment
var sysId = Guid.Parse("SYS_ID");
var modId = Guid.Parse("MOD_ID");
var comment = "OPTIONAL COMMENT TEXT";

var response = client.CreateModifierAssignmentBySystem(sysId, modId, comment);
}
// returns guid of the assignment

CreateModifierAssignmentByComponent(Guid compId, Guid modId, string
comment)

Pair a Component's ID with a cost modifier ID using this call.

- 67 -

public void CreateComponentModAssignment()
{

// create variables to hold COMP_ID, MOD_ID, and, optionally, a comment
var compId = Guid.Parse("COMP_ID");
var modId = Guid.Parse("MOD_ID");
var comment = "OPTIONAL COMMENT TEXT";

var response = client.CreateModifierAssignmentByComponent(compId, modId, comment);
}
// returns guid of the assignment

CreateModifierAssignmentBySection(Guid secId, Guid modId, string com-
ment)

Pair a Section's ID with a cost modifier ID using this call.

public void CreateSectionModAssignment()
{

// create variables to hold SEC_ID, MOD_ID, and, optionally, a comment
var secId = Guid.Parse("SEC_ID");
var modId = Guid.Parse("MOD_ID");
var comment = "OPTIONAL COMMENT TEXT";

var response = client.CreateModifierAssignmentBySection(secId, modId, comment);
}
// returns guid of the assignment

Update Cost Modifier Assignment

Scope: Works at inventory levels Organization, Facility, System, Component, and Sec-
tion.

These calls allow you to change the comment associated with a cost modifier assign-
ment. If you want to change either the asset ID or the cost modifier ID in the rela-
tionship established by the assignment, you will need to delete the assignment and
create a new one.

To update the comment for a cost modifier assignment you will need to provide (1) the
assignment's ID property and (2) the updated comment, using one of the following
methods:

l UpdateModifierAssignmentByOrg
l UpdateModifierAssignmentByFacility
l UpdateModifierAssignmentBySystem
l UpdateModifierAssignmentByComponent
l UpdateModifierAssignmentBySection

- 68 -

Code Examples: Update Cost Modifier Assignment

A C# code example is provided below for each level of inventory accommodated.

UpdateModifierAssignmentByOrg(Guid assignmentId, string comment)

This code allows you to change the comment associated with a cost modifier assign-
ment.

To use, replace ASSIGN_ID with the GUID of the assignment you want to update:

public void updateModifierAssignmentByOrg()
{

//provide ID and updated comment to be used as parameters
var orgAssignId = Guid.Parse("ASSIGN_ID");
var newComment = "NEW COMMENT";

//call the update function
var response = client.UpdateModifierAssignmentByOrg(orgAssignID, newComment);

}
// returns Boolean: true = successful update

UpdateModifierAssignmentByFacility(Guid assignmentId, string comment)

This code allows you to change the comment associated with a cost modifier assign-
ment.

To use, replace ASSIGN_ID with the GUID of the assignment you want to update:

public void updateModifierAssignmentByFacility()
{

//provide ID and updated comment to be used as parameters
var facAssignId = Guid.Parse("ASSIGN_ID");
var newComment = "NEW COMMENT";

//call the update function
var response = client.UpdateModifierAssignmentByFacility(facAssignId, newComment);

}
// returns Boolean: true = successful update

UpdateModifierAssignmentBySystem(Guid assignmentId, string comment)

This code allows you to change the comment associated with a cost modifier assign-
ment.

To use, replace ASSIGN_ID with the GUID of the assignment you want to update:

public void updateModifierAssignmentBySystem()
{

//provide ID and updated comment to be used as parameters
var sysAssignId = Guid.Parse("ASSIGN_ID");
var newComment = "NEW COMMENT";

- 69 -

//call the update function
var response = client.UpdateModifierAssignmentBySystem(sysAssignId, newComment);

}
// returns Boolean: true = successful update

UpdateModifierAssignmentByComponent(Guid assignmentId, string com-
ment)

This code allows you to change the comment associated with a cost modifier assign-
ment.

To use, replace ASSIGN_ID with the GUID of the assignment you want to update:

public void updateModifierAssignmentByComponent()
{

//provide ID and updated comment to be used as parameters
var compAssignId = Guid.Parse("ASSIGN_ID");
var newComment = "NEW COMMENT";

//call the update function
var response = client.UpdateModifierAssignmentByComponent(compAssignId, newComment);

}
// returns Boolean: true = successful update

UpdateModifierAssignmentBySection(Guid assignmentId, string comment)

The code below allows you to change the comment associated with a cost modifier
assignment.

To use, replace ASSIGN_ID with the GUID of the assignment you want to update.

public void updateModifierAssignmentBySection()
{

//provide ID and updated comment to be used as parameters
var secAssignId = Guid.Parse("ASSIGN_ID");
var newComment = "NEW COMMENT";

var response = client.UpdateModifierAssignmentBySection(secAssignId, newComment);
}
// returns Boolean: true = successful update

Delete Cost Modifier Assignment

Subject to your BUILDER user permission level and scope, you can delete cost modifiers
and their assignments at the Organization level and at the Facility level down through
Section level using BUILDER API.

- 70 -

Scope: Works at inventory levels Organization, Facility, System, Component, and Sec-
tion.

These calls will delete all modifier assignments created for the asset specified in the call
by its GUID. It will not affect the modifiers themselves.

Code Examples: Delete Cost Modifier Assignment

A C# code example is provided below for each level of inventory accommodated.

DeleteModifierAssignmentByOrg(Guid id)

Replace ORG_ID with the string representation of a real Organization's GUID to delete
all modifier assignments associated with that Organization.

public void deleteModifierAssignmentByOrg()
{

var response = client.DeleteModifierAssignmentByOrg(Guid.Parse("ORG_ID"));
}
// returns Boolean: true = modifier assignment deleted

DeleteModifierAssignmentByFacility(Guid id)

Replace FAC_ID with the string representation of a Facility's GUID to delete all modifier
assignments associated with that Facility.

public void deleteModifierAssignmentByFacility()
{

var response = client.DeleteModifierAssignmentByFacility(Guid.Parse("FAC_ID"));
}
// returns Boolean: true = modifier assignment deleted

DeleteModifierAssignmentBySystem(Guid id)

Replace SYS_ID with the string representation of a System's GUID to delete all modifier
assignments associated with that System.

public void deleteModifierAssignmentBySystem()
{

var response = client.DeleteModifierAssignmentBySystem(Guid.Parse("SYS_ID"));
}
// returns Boolean: true = modifier assignment deleted

DeleteModifierAssignmentByComponent(Guid id)

Replace COMP_ID with the string representation of a Component's GUID to delete all
modifier assignments associated with that Component.

- 71 -

public void deleteModifierAssignmentByComponent()
{

var response = client.DeleteModifierAssignmentByComponent(Guid.Parse("COMP_ID"));
}
// returns Boolean: true = modifier assignment deleted

DeleteModifierAssignmentBySection(Guid id)

Replace SEC_ID with the string representation of a Section's GUID to delete all modifier
assignments associated with that Section.

public void deleteModifierAssignmentBySection()
{

var response = client.DeleteModifierAssignmentBySection(Guid.Parse("SEC_ID"));
}
// returns Boolean: true = modifier assignment deleted

Get Modifier Lists
The calls described below will get an array of the modifiers that are included in a mod-
ifier library ("GetModifierList(Guid id)" below) or an array of the modifiers in the scope
of a given Organization ("GetModifierListByOrg(Guid id)" below).

Example Code: Cost Modifier Lists

Code examples are in C#.

GetModifierList(Guid id)

The calls GetModifierLibrary and GetModifierList both use the GUID of a modifier library
as the parameter. The difference between the two calls is that GetModifierList returns a
list of all the modifiers in the library, whereas GetModifierLibrary returns information
about the library itself.

To use the code below, replace MOD_LIB_ID with the string representation of a cost
modifier library's GUID.

public void getModifierList()
{

var response = client.GetModifierList(Guid.Parse("MOD_LIB_ID"));
}
// returns array of DTOCostModifier

GetModifierListByOrg(Guid id)

The code below returns all the cost modifiers associated with the specified Organ-
ization.

- 72 -

To use the code, replace ORG_ID with the string representation of an Organization's
GUID.

public void getModifierListByOrg()
{

var response = client.GetModifierListByOrg(Guid.Parse("ORG_ID"));
}
// returns array of DTOCostModifier

- 73 -

INSPECTIONS

Inspection Service Calls
Using BUILDER API, you can do the following for both direct rating inspections and dis-
tress inventory inspections:

l Get Inspection
l Create Inspection
l Update Inspection
l Delete Inspection

Inspection Sample Use Case
The following sample use case shows creating a direct rating inspection:

l "Use Case 5: Create a Direct Rating Inspection" on page 151

Color vs. Numeric Condition Rating
In the BUILDER Web interface, color selections (Green+, Green, Green-, etc.) are used
for a direct rating on a Section. In BUILDER API a numeric condition rating is used
instead.

The table below shows the condition rating equivalent to what BUILDER assigns to each
color selection, as well as the range of condition ratings covered by each color selection.

Color
Selection

Cond. Rating
Equivalent Range

Green + 100 100 - 100

Green 95 93 - 99

Green - 88 86 - 92

Amber + 80 75 - 85

Amber 71 65 - 74

Amber - 61 56 - 64

Red + 50 37 - 55

Red 30 11 - 36

Red - 10 0 - 10

Condition Rating Equivalents for Direct Inspection Color
Selections

- 74 -

Get Inspection

The GetInspection call works for both a direct inspection or a distress survey. To get a
direct inspection, focus on those inspections having a value of 2 for the Type property.
To get a distress survey, you will want to focus on those inspections having a value of 1
for the Type property.

There are additional calls below that are exclusively to get data specific to distress sur-
veys.

Code Examples: Get Inspections

There are two alternative ways to get an inspection:

a. Use the GUID of a Section to get all inspections performed on that Section, then
select one.

b. Use the GUID of the inspection itself to get that inspection.

Each of these is illustrated below. Code examples are in C#.

GetSectionInspections(Guid id)

For this call, the GUID input parameter you need to provide is that of a Section.

The sample code below takes the ID property (GUID) of the inspected Section as a para-
meter, and returns an array of the inspections performed on that Section (stored in the
variable secInsps). The array will not be in any particular order.

In the code example, the ID property and InspectionType property (1 = distress
survey, 2 = direct inspection) of each inspection is output to the console, along with the
inspection date. If the desired inspection can be identified by its date, then the cor-
responding ID can be used as the parameter to get just that particular inspection, using
the call GetInspections.

To use the code, replace SEC_ID with the string representation of a Section's GUID.

Note: The comment instructions for using the code are set up to display
only direct inspections or only distress surveys, but the array returned by
the call contains inspections of all types performed on the designated Sec-
tion.

- 75 -

public void getSectionInspections()
{

var secInsps = client.GetSectionInspections(Guid.Parse("SEC_ID")).Data;

foreach (var item in secInsps)
{

// for distress surveys only:
// use the next two lines and comment out direct ratings code
if (item.Type == 1)

Console.WriteLine(item.ID.ToString() + ": " + item.Date.ToString());

// for direct ratings only:
// use the next two lines and comment out distress survey code
if (item.Type == 2)

Console.WriteLine(item.ID.ToString() + ": " + item.Date.ToString());
}

Console.Read();
}
//returns array of DTOInspection

GetInspection(Guid id)

This call returns an instance of an inspection object. The input parameter that you need
to provide is the GUID of an inspection. This can be a direct inspection or a distress sur-
vey.

Tip: One way to come up with the GUID of an inspection is to run the call
"GetSectionInspections(Guid id)" on the previous page.

In the code example below, the first line declares an instance of DTOInspection, and the
following (optional) line outputs the inspection's GUID, inspection type, and the date of
inspection.

To use the code, replace INSP_GUID with the string representation of an inspection's
GUID.

public void getInspection()
{

var insp = client.GetInspection(Guid.Parse("INSP_ID")).Data;

Console.WriteLine(insp.SectionID.ToString() + ":" + insp.Date.ToString());
}
// returns DTOInspection

Code Examples: Get Data Specific to Distress Surveys

Code examples are in C#.

- 76 -

GetDistressSeverityValues(int[] IDs)

This call facilitates retrieving an array showing the ID numbers for severity values asso-
ciated with distress surveys. The input parameter that you need to provide is the size of
the array you want.

The code below shows how to construct the array of integers to be passed to the call as
its parameter.

public void getDistressSeverityValues()
{

// create an integer array for severity values
var insp = severityIDs = new int[2];

// then populate the array
severityIDs[0] = 1;
severityIDs[2] = 2;

// after setting up the array, make the call
var response = client.GetDistressSeverityValues(severityIDs);

}
// returns array of DTOSeverityValue

GetDistressDensityValues(int[] IDs)

This call facilitates retrieving an array showing the ID numbers for density values asso-
ciated with distress surveys. The input parameter that you need to provide is the size of
the array you want.

The code below shows how to construct the array of integers to be passed to the call as
its parameter.

public void getDistressDensityValues()
{

// create an integer array for density values
var densityIDs = new int[2];

// then populate the array
densityIDs[0] = 1;
densityIDs[2] = 2;

// after setting up the array, make the call
var response = client.GetDistressDensityValues(densityIDs);

}
// returns array of DTODensityValue

- 77 -

Lock and Unlock Inventory

Using the BUILDER API, you can lock and unlock individual Systems.

An example of when you might do this is when one or more Systems are checked out
and back in to BuilderRED or another remote device designed to assist with taking
BUILDER inventory or performing inspections.

Code Examples: Lock and Unlock Systems

Code examples are in C#.

LockSystem(Guid id)

This call locks a System so that it can not be edited in BUILDER until after the System is
unlocked again.

To use the code shown here, replace SYS_ID with the string representation of a System's
GUID.

public void lockSystem()
{

var response = client.LockSystem(Guid.Parse("SYS_ID"));
}
// returns Boolean: true = unlocked system successfully locked

A return of false from the LockSystem call can mean that an unlocked system has not
been successfully locked, or it can mean that the system was already locked (and still is).

UnlockSystem(Guid id)

This call unlocks a System, such as when it has been locked against editing using the
LockSystem call.

To use the code shown here, replace SYS_ID with the string representation of a System's
GUID.

public void unlockSystem()
{

var response = client.UnlockSystem(Guid.Parse("SYS_ID"));
}
// returns Boolean: true = system successfully unlocked

A return of false from the UnlockSystem call can mean that a locked system has not
been successfully unlocked, or it can mean that the system was already unlocked (and
still is).

- 78 -

Create Inspection

For creating an inspection, you need to know that the value of the Type property of an
inspection is 1 for a distress survey, 2 for a direct rating.

It helps to be familiar with the DTOInspection class, and also with the DTOSample class if
the inspections you are handling use sampling.

Enums for Creating Inspection

InspectionType Enum

The value to use for the required property Type is governed by the InspectionType
enum, which maps values to inspection type choices as follows:

1 = DistressSurvey

2 = DirectRating

3 = DistressWithQuantity

4 = RooferInspection

InspectionSource Enum

The value to use for the required property InspectionSource is governed by the
InspectionSource enum, which maps values to inspection source choices as follows:

0 = InstallDate (initial inspection generated by BUILDER with CI = 100)

1 = Inspection

2 = WorkComp

3 = RapidInspection

4 = Roofer

5 = RooferRepairProject

Code Example: Create Inspection

Code examples are in C#.

- 79 -

CreateInspection(DTOinspection inspection)

To create a direct rating inspection,

1. Declare a new instance of an inspection and assign values to the non-array prop-
erties.

2. Enter sample information in one of two alternate ways:
a. For a direct rating inspection where inspectionName.IsSampling is

False, the entire Section is the sample. Assign to inspec-
tionName.Sample[0].ConditionRating the value corresponding
to the desired direct rating, as shown in the table in "Numerical Values for
Direct Rating Selections."

b. For a direct rating inspection where inspectionName.IsSampling is
True, you will need to create individual samples, indicating the sample loc-
ation for each (the sample location property isn't needed when isSamp-
ling is False).

3. Call CreateInspection(<name of instance created in Step
1>). and store the returned GUID in a variable with data format type of guid.

Below is sample code for creating a direct rating inspection without sampling.

public void createInspectionDirect()
{

//creates non sampling direct rating inspection
var insp = new <service reference name>.DTOInspection();
insp.Type = 2; // Type 2 is direct rating
insp.Date = DateTime.Now;
insp.IsSampling = false;
insp.Source = "Inspection";

// enter information of samples.
// If isSampling false, there is just one sample that comprises the whole section

var samp = new <service reference name>.DTOSample();
samp.IsPaint = false;
//when isSampling = false, sample qty should equal section qty
samp.Quantity = 3;
samp.ConditionRating = 70;

//make array for sample properties
<service reference name>.DTOSample[] smpArray = { samp };

insp.Samples = smpArray;
Guid theGuid = client.CreateInspection(insp).Data;
Console.WriteLine(theGuid.ToString());
Console.Read();

}
// returns guid of the new inspection

- 80 -

Update Inspection

Code Example: Update Inspection

Code examples are in C#.

UpdateInspection(DTOinspection inspection)

This code example populates the new instance of the inspection directly with a Get call
without using a separate variable to store the results of the Get call.

To use the code, replace INSP_ID with the string representation of the GUID (ID prop-
erty) of the inspection to be updated.

public void updateInspection()
{

//declare new instance and populate
var updateInspection = new <service reference name>.DTOInspection();
updateInspection = client.GetInspection(Guid.Parse("INSP_ID")).Data;

//add properties or change property values as needed; for example:
insp.Samples[0].IsPaint = true;
insp.Samples[0].PaintRating = 100;

var response = client.UpdateInspection(updateInspection);

//error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = successful update

Delete Inspection

Code Example: Delete Inspection

The call for deleting a distress survey and the call for deleting a direct inspection are the
same.

Code examples are in C#.

DeleteInspection(Guid id)

To use this code, replace INSP_ID with the string representation of the GUID (ID prop-
erty) of the inspection or distress survey to be deleted.

- 81 -

public void deleteInspection()
{

client.DeleteInspection(Guid.Parse("INSP_ID"));
}
// returns Boolean: true = inspection deleted

- 82 -

KNOWLEDGE-BASED INSPECTIONS

Knowledge-based inspections (KBIs) are those that have been performed in response to
recommendations from a KBI Schedule generated in BUILDER.

The current capability in the API with respect to KBIs is that you can get KBIs that have
been performed.

Get Knowledge-Based Inspection

Scope: Site, Complex, Facility, Section.

Using the BUILDER API, you can get knowledge-based inspections (KBIs) at different
inventory levels. These will always be presented with paged results.

Code Examples: Get KBIs, with Paged Results

Code examples are in C#.

GetSiteKBIs(Guid id, int skip, int take)

To use the code shown, replace SITE_ID with the string representation of a Site's GUID.

The sample below returns the first 100 results (or all of them, if the array has fewer than
100 elements) in an array of DTOKnowledgeBasedInspection.

public void getSiteKBIs()
{

var response = client.GetSiteKBIs(Guid.Parse("SITE_ID"), 0, 100);

// Optional: Output the number of KBIs in the array to the console
Console.WriteLine("The number of KBIs found by this call is "
+ response.Data.Length.ToString());

}
// returns DTOKnowledgeBasedInspection

GetComplexKBIs(Guid id, int skip, int take)

The sample below returns the first 100 results (or all of them, if the array has fewer than
100 elements) in an array of DTOKnowledgeBasedInspection.

To use the code shown, replace CPX_ID with the string representation of a Complex's
GUID.

- 83 -

public void getComplexKBIs()
{

var response = client.GetComplexKBIs(Guid.Parse("CPX_ID"), 0, 100);

// Optional: Output the number of KBIs in the array to the console
Console.WriteLine("The number of KBIs found by this call is "
+ response.Data.Length.ToString());

}
// returns array of DTOKnowledgeBasedInspection

GetFacilityKBIs(Guid id, int skip, int take)

The sample below returns the first 100 results (or all of them, if the array has fewer than
100 elements) in an array of DTOKnowledgeBasedInspection.

To use the code shown, replace FAC_ID with the string representation of a Facility's
GUID.

public void getFacilityKBIs()
{

var response = client.GetFacilityKBIs(Guid.Parse("FAC_ID"), 0, 100);

// Optional: Output the number of KBIs in the array to the console
Console.WriteLine("The number of KBIs found by this call is "
+ response.Data.Length.ToString());

}
// returns array of DTOKnowledgeBasedInspection

GetSectionKBIs(Guid id, int skip, int take)

The sample below returns the first 100 results (or all of them, if the array has fewer than
100 elements) in an array of DTOKnowledgeBasedInspection.

To use the code shown, replace SEC_ID with the string representation of a Section's
GUID.

public void getSectionKBIs()
{

var response = client.GetSectionKBIs(Guid.Parse("SEC_ID"), 0, 100);

// Optional: Output the number of KBIs in the array to the console
Console.WriteLine("The number of KBIs found by this call is "
+ response.Data.Length.ToString());

}
// returns array of DTOKnowledgeBasedInspection

- 84 -

ATTACHMENTS

Using the BUILDER API, you can add an attachment to an inventory asset, or to an
inspection. The asset or inspection is called the "owner" of the attachment.

You can fetch attachments, add attachments, and delete attachments. To change an
attachment, you will need to delete the old one and create a new one.

BUILDER API has these calls related to attachments:

l AddAttachment
l AddAttachmentWithFileExtension
l FetchAttachmentsByOwner
l FetchAttachmentsWithDetailsByOwner
l FetchAttachmentDetailsWithHashesByOwner
l FetchAttachment
l FetchAttachmentWithDetails
l DeleteAttachment

Fetch Attachment

BUILDER API provides a rich variety of ways to define the attachments you want to
fetch.

Code Examples: Fetch Attachment

Code examples are in C#.

FetchAttachment(Guid attachmentId)

This call returns an attachment identified by its GUID (ImageID property). It does not
return any of the meta information such as description and other readable properties.
To receive those details along with the attachment itself, you need to use the call
"FetchAttachmentWithDetails(Guid attachmentId)" on the next page.

If you don't know the GUID of the attachment, you may need to use another call, such
as "FetchAttachmentsByOwner(Guid ownerId, string level)" on the next page, in order
to get the Guid to use.

- 85 -

#FAttch
#AttchDet

To use the code, replace ATTACHMENT_ID with the string representation of a valid
attachment's ImageID property. If you don't already have the ID of the attachment,
the call FetchAttachmentsWithDetailsByOwner can help you find it.

public void fetchAttachment()
{

var response = client.FetchAttachment(Guid.Parse("ATTACHMENT_ID"));
}
// returns byte data of the attachment

FetchAttachmentWithDetails(Guid attachmentId)

This call returns an attachment identified by its GUID (ImageID property). This returns
the image along with meta information such as description and other readable prop-
erties.

If you don't know the GUID of the attachment, you may need to use another call, such
as FetchAttachmentsByOwner(Guid ownerId, string level), in order to get the Guid to
use.

To use the code, replace ATTACHMENT_ID with the string representation of a valid
attachment's ImageID property. If you don't already have the ID of the attachment,
the call FetchAttachmentsWithDetailsByOwner can help you find it.

public void fetchAttachmentWithDetails()
{

var response = client.FetchAttachmentWithDetails(Guid.Parse("ATTACHMENT_ID"));
}
// returns DTOAttachment

FetchAttachmentsByOwner(Guid ownerId, string level)

This call returns a collection of attachments based on the parameters supplied. It does
not return any of the meta information such as description and other readable prop-
erties. To receive those details along with the attachments themselves, you need to use
the call FetchAttachmentsWithDetailsByOwner.

To use the code, replace OWNER_ID with the string representation of a valid asset or
inspection's ID property, and replace "LEVEL" with one of the following:

l "Section_Detail"
l "Section"
l "Component_Section"
l "Component"
l "System_Component"
l "System"

- 86 -

l "Building_System"
l "Building"
l "Complex"
l "Site"
l "Inspection"
l "Inspection_Data"

public void fetchAttachmentsByOwner()
{

var response = client.FetchAttachmentsByOwner(Guid.Parse("OWNER_ID"),
"LEVEL");

}
// returns byte data of the attachment

FetchAttachmentsWithDetailsByOwner(Guid ownerId, string level)

This call returns an array of attachments based on the parameters supplied. This returns
the image along with meta information such as description and other readable prop-
erties.

To use the code, replace OWNER_ID with the string representation of a valid asset or
inspection's ID property, and replace "OWNER_LEVEL" with one of the following:

l "Section_Detail"
l "Section"
l "Component_Section"
l "Component"
l "System_Component"
l "System"
l "Building_System"
l "Building"
l "Complex"
l "Site"
l "Inspection"
l "Inspection_Data"

public void fetchAttchsWithDetailsByOwner()
{

var response = client.FetchAttachmentsWithDetailsByOwner(Guid.Parse("OWNER_ID"), "LEVEL");
}
// returns array of DTOAttachment

- 87 -

FetchAttachmentDetailsWithHashesByOwner(Guid ownerId, string level)

This call returns an array of attachments based on the parameters supplied, including
the same metadata as described in FetchAttachmentsWithDetailsByOwner, and then
hashes it.

To use the code, replace OWNER_ID with the string representation of a valid asset or
inspection's GUID (ID property), and replace "OWNER_LEVEL" with one of the fol-
lowing:

l "Section_Detail"
l "Section"
l "Component_Section"
l "Component"
l "System_Component"
l "System"
l "Building_System"
l "Building"
l "Complex"
l "Site"
l "Inspection"
l "Inspection_Data"

public void fetchAttchDetailsWithHashesByOwner()
{

var response = client.FetchAttachmentDetailsWithHashesByOwner(Guid.Parse("OWNER_ID"),
"LEVEL");

}
// returns array of DTOAttachment

Add Attachment

You can associate one or more attachments with an inspection or with any level of asset
except Organization. If you connect multiple attachments to the same asset or inspec-
tion, each attachment will need a separate call.

Code Examples: Add Attachment

Code examples are in C#.

- 88 -

AddAttachment(Guid ownerId, string level, string imgTitle, string imgDesc,
byte[] attachment)

IMPORTANT: The only kind of file you can attach with this call is a file with
.bmp file extension.

The five parameters for this call are:

1. Guid ownerId. This is the GUID of the attachment's "owner", which is the invent-
ory asset or inspection that the attachment is to be associated with.

2. string level. This specifies the asset level or other type of owner (such as inspec-
tion). The options that can be used for "level" are:

l "Section_Detail"
l "Section"
l "Component_Section"
l "Component"
l "System_Component"
l "System"
l "Building_System"
l "Building"
l "Complex"
l "Site"
l "Inspection"
l "Inspection_Data"

3. string imgTitle. Title for the attachment.
4. string imgDesc. Description of what the attachment represents.
5. byte[] attachment. The array containing the information for the image attach-

ment. This is built and populated in the code, rather than a value being directly
provided in a parameter.

The first parameter, represented in the code sample by OWNER_ID, is the GUID of the
entity that the attachment belongs with. This entity can be an inspection, or it can be a
Site, Complex, Building/Facility, System, Component, or Section.

This code will transfer one byte at a time of a .bmp image into an attachment. Before
running it, make the following replacements:

l Replace FULL FILE DIRECTORY PATH with the path of the image to be attached,
including the file name of the image and its extension.

l Replace OWNER_ID with the string representation of the appropriate GUID.

- 89 -

l Replace "OWNER_LEVEL" with one of the following: "Section_Detail" "Section"
"Component_Section" "Component" "System_Component" "System" "Building_
System" "Building" "Complex" "Site" "Inspection" "Inspection_Data" "Section_
Detail"

l Replace IMG_TITLE and IMG_DESCR with strings you enter for the title and
description of the image, respectively.

public void addAttachment();
{
byte[] imageByteArray = null;
string imagePath = @"FULL FILE DIRECTORY PATH";
FileStream fileStream = new FileStream(imagePath, FileMode.Open, FileAccess.Read);

using (BinaryReader reader = new BinaryReader(fileStream))
{

imageByteArray = new byte[reader.BaseStream.Length];
for (int i = 0; i < reader.BaseStream.Length; i++)
{

imageByteArray[i] = reader.ReadByte();
}

}
var response = client.AddAttachment(Guid.Parse("OWNER_ID"), "OWNER_LEVEL",

"IMG_TITLE", "IMG_DESC", imageByteArray);
}
//returns guid of the image attachment

AddAttachmentWithFileExtension(Guid ownerId, string level, string
imgTitle, string imgDesc, byte[] attachment, string fileExtension)

You can use this call to add an attachment having any of the following extensions,

.accdb, .bmp, .doc, .docx, .jpeg, .jpg, .pdf, .png, .xksx, .zip

The six parameters for this call are:

1. Guid ownerId. This is the GUID of the attachment's "owner", which is the invent-
ory asset or inspection that the attachment is to be associated with.

2. string level. This specifies the asset level or other type of owner (such as inspec-
tion). The options that can be used for "level" are:

l "Section_Detail"
l "Section"
l "Component_Section"
l "Component"
l "System_Component"
l "System"
l "Building_System"
l "Building"

- 90 -

l "Complex"
l "Site"
l "Inspection"
l "Inspection_Data"

3. string imgTitle. Title for the attachment.
4. string imgDesc. Description of what the attachment represents.
5. byte[] attachment. The array containing the information for the attachment. This

is declared and populated in the code, rather than a value being directly provided
in a parameter.

6. string fileExtension. accdb, bmp, doc, docx, jpeg, jpg, pdf, png, xlsx, or zip

This code will transfer one byte at a time of a file or image into an attachment. Before
running it, make the following replacements:

l Replace FULL FILE DIRECTORY PATH with the path of the image to be attached,
including the file name of the image/attachment and its extension.

l Replace OWNER_ID with the string representation of the appropriate GUID.
l Replace "OWNER_LEVEL" with one of the following: "Section_Detail" "Section"

"Component_Section" "Component" "System_Component" "System" "Building_
System" "Building" "Complex" "Site" "Inspection" "Inspection_Data"

l Replace IMG_TITLE and IMG_DESCR with strings you enter for the title and
description of the image, respectively.

l Replace "ATTACHMENT_EXT" with "accdb", "bmp", "doc", "docx", "jpeg", "jpg",
"pdf", "png", "xlsx", or "zip"

public void addAttachmentWithFileExtension()
{
byte[] attachmentByteArray = null;
string attachmentPath = @"FULL FILE DIRECTORY PATH";
FileStream fileStream = new FileStream(attachmentPath, FileMode.Open, FileAccess.Read);

using (BinaryReader reader = new BinaryReader(fileStream))
{

attachmentByteArray = new byte[reader.BaseStream.Length];
for (int i = 0; i < reader.BaseStream.Length; i++)
{

attachmentByteArray[i] = reader.ReadByte();
}

}

// in the API call, acceptable values for ATTACHMENT_EXT are:
// accdb, bmp, doc, docx, jpeg, jpg, pdf, png, xlsx, or zip

var response = client.AddAttachmentWithFileExtension(Guid.Parse("OWNER_ID"),
"OWNER_LEVEL", "IMG_TITLE", "IMG_DESC", attachmentByteArray, "ATTACHMENT_EXT");

}
//returns guid of the attachment

- 91 -

Delete Attachment

Code Example: Delete Attachment

DeleteAttachment(Guid attachmentId)

You can use this call to delete one attachment at a time, by GUID.

To use the code, replace ATTACHMENT_ID with the string representation of a valid
attachment's GUID (ID property).

public void deleteAttachment()
{

var response = client.DeleteAttachment(Guid.Parse("ATTACHMENT_ID"));
}
// returns Boolean: true = attachment deleted

- 92 -

PERFORMANCE METRICS

About Performance Metrics
Performance metrics (such as condition index) can not be directly manipulated using
BUILDER API. However, you can access the information by using the service call

GetPerformanceRecords(Guid ownerlink, PerformanceRecordType metric, int year)

using the GUID of the inventory item ("ownerlink"), stating the desired record type to
obtain ("metric"), and specifying the year ("year").

Scope: All inventory levels except Section Detail.

This service call can be used at all inventory levels from Section through Organization,
by providing the GUID of the inventory object as the parameter. The format is provided
in "GetPerformanceRecords(Guid ownerlink, PerformanceRecordType metric, int year)"
on the next page.

Best Practice: Best practice is to run a rollup before getting performance
records, to ensure that the desired metric(s) are obtained from the most
current data available in the system.

Available Metric Types

The value to use for the parameter "metric" is governed by the Per-
formanceRecordType enum. Either the integer value or the enum should work
equally well. The second parameter in the GetPerformanceRecords code example shows
how to use an enum as a PerformanceRecordType property.

0 = CI

1 = FI

2 = RCI (ROOFER Condition Index)

3 = FCI (Facility/Financial Condition Index)

4 = PI

5 = All types listed above.

Year

Only a single year can be specified for the parameter "year".

- 93 -

Get Performance Metrics

Code Example: Get Performance Records

Code examples are in C#.

GetPerformanceRecords(Guid ownerlink, PerformanceRecordType metric,
int year)

Note: The format of the call to get performance records for an asset does
not depend on the inventory level of the associated asset.

Best Practice: Best practice is to run a rollup before getting performance
records, to ensure that the desired metric(s) are obtained from the most
current data available in the system.

The GUID called for in the signature of this call is the GUID of the asset or inspection to
get performance records for.

To use the code,

l Replace OWNER_ID with the string representation of an inspection's or an invent-
ory asset's GUID.

l Select a metric type. CI is shown here as an example of how to use the enum
(rather than the integer value).

l Specify a year, only one year. 2019 is used in the example.

public void getPerformanceRecords()
{

var PerformanceRecords = client.GetPerformanceRecords(Guid.Parse("OWNER_ID"),
PerformanceRecordType.CI, 2019).Data;

foreach(var record in PerformanceRecords)
{

Console.WriteLine("CI: " + record.Value.ToString());
}
Console.Read();

}
// returns array of DTOPerformanceRecord

- 94 -

WORK CONFIGURATION

Scope: The currently available work configuration calls operate at the Organization level
only.

BUILDER work configuration is an advanced level task. It involves designing business
rules for work generation, and also involves working with data sets.

This chapter shows the API calls related to work configuration that are currently avail-
able.

CAUTION: In BUILDER API Version 2022, selected calls related to work con-
figuration have been included to help with obtaining information requisite
for creating scenarios. They are not sufficient for performing work con-
figuration.

Standards

There are no active API calls related to standards at present.

Policies

There are no active API calls related to standards at present.

Get Policy Sequences

Code Example: Policy Sequences

Code examples are in C#.

Scope: The currently available work configuration calls operate at the Organization level
only.

- 95 -

GetOrgPolicySequences(Guid id)

This call returns all policy sequences associated with the specified Organization.

To use this code, replace ORG_ID with the string representation of an Organization's
GUID.

public void getOrgPolicySequences()
{

var response = client.GetOrgPolicySequences(Guid.Parse("ORG_ID"));
}
// returns array of DTOPolicySequence

Get FCI Policies

Code Example: FCI Policies

Code examples are in C#.

Scope: The currently available work configuration calls operate at the Organization level
only.

GetOrgFCIPolicies(Guid id)

This call returns all FCI policies associated with the specified Organization.

To use this code, replace ORG_ID with the text representation of a real Organization
GUID. The call returns an array of DTOFCIPoliicy, and in each FCI policy, the FCIPoli-
cyOwnerID property is the GUID of the Organization.

public void getOrgFCIPolicies()
{

var response = client.GetOrgFCIPolicies(Guid.Parse("ORG_ID"));
}
// returns array of DTOFCIPolicy

Get Prioritization Schemes

Code Example: Prioritization Schemes

Code examples are in C#.

- 96 -

Scope: The currently available work configuration calls operate at the Organization level
only.

GetOrgPrioritizationSchemes(Guid id)

This call returns all prioritization schemes associated with the specified Organization.

To use this code, replace ORG_ID with the text representation of a real Organization
GUID. The call returns an array of DTOPrioritizationScheme, and in each prioritization
scheme, the PrioritizationSchemeOwnerID property is the GUID of the Organization.

public void getOrgPrioritizationSchemes()
{

var response = client.GetOrgPrioritizationSchemes(Guid.Parse("ORG_ID"));
}
// returns array of DTOPrioritizationScheme

- 97 -

DATA LIBRARIES

Work configuration can also involve choosing between default and customized data lib-
raries. Data libraries (aka "books" or "data sets") are used for the following:

l Cost data libraries (cost books): Costs used for assets in the inventory.
l Cost modifier libraries, used with Inventory Cost Modifiers.
l Inflation data libraries: Inflation factors that are applied each year to the costs

being used for assets.
l Remaining Service Life (RSL) data libraries: Figures used for average life span of

various assets. When combined with the age of an asset, this provides an estim-
ated remaining service life for the asset.

l Component Importance Index (CII) data libraries. (Not included in the BUILDER API
at this time.)

Working with data libraries requires an advanced level of permissions. However, work-
ing with cost records might not require as elevated a permissions level.

Asset costs can be adjusted using the Cost and Inflation data sets, and by using Invent-
ory Cost Modifiers.

Cost Data Libraries (Cost Books)

This topic explains how to get, create, or update a cost book, also known as a CostMOA.
The 2022 BUILDER API does not currently contain a call for deleting a cost book.

You can get a single cost book directly by its GUID; you can get all the cost books asso-
ciated with a given Organization; and you can get all the cost books associated with a
given source.

Code Examples: Cost Data Sets

Code examples are in C#.

GetCostMOA(Guid id)

This call allows you to get a single cost book/cost MOA.

To use the example code given below, replace MOA_ID with the string representation of
a cost book's GUID (its MOA_ID property).

- 98 -

Tip: To find the GUID of a cost book, you can start with the GUID of an
Organization the cost book is employed for and use the call
GetCostMOAForOrganizationId.

public void getCostMOA()
{

var response = client.GetCostMOA(Guid.Parse("MOA_ID"));
}
// returns DTOCostMOA

GetCostMOAForOrganizationId(Guid guid)

This call returns the cost books associated with the specified Organization.

To use the code below, replace ORG_ID with the string representation of an Organ-
ization's GUID.

public void getCostMOAForOrganizationId()
{

var response = client.GetCostMOAForOrganizationId(Guid.Parse("ORG_ID"));
}
// returns array of DTOCostMOA

GetCostMOAForSource(string costbook)

This call will get the cost book associated with a given source.

To use this code, replace SOURCE_VALUE with a Source identifier, which will be a string.

public void getCostMOAForSource()
{

var response = client.GetCostMOAForSource("SOURCE_VALUE");
}
// returns DTOCostMOA

CreateCostMOA(DTOCostMOA costbook)

When you invoke this call, the BUILDER API will initiate the new cost book by copying
over the cost records from the Reference cost book into your newly created cost book.
Namely, the Reference cost book is the starting point, after which you can use the call
"UpdateCostRecord(DTOCostMOA costMOA)" on page 106 to change records in your
new cost book. No other cost book aside from Reference can be the starting point when
using BUILDER API to create a new cost book.

To use the sample code, replace OWNER_ID with the string representation of the GUID
of the cost book owner (This can be an Organization or a Site), and replace NOT DUPL
with a name for the new cost book.

- 99 -

Note about the Owner ID property: Data sets can be assigned both at the
Organization level and at the Site level, and the data set designated at the
Site level has priority.

The properties listed in the code below are only those that are required by BUILDER for
validation of the object; they might not be everything needed for a cost book that is
usable.

public void createCostMOA()
{

var newCostBook = new <service reference name>.DTOCostMOA();

//set properties here
newCostBook.Owner_ID = "OWNER_ID";
newCostBook.MOA_Name = "NOT DUPL"; // cannot be a duplicate name
newCostBook.Min_Cost = 0;
newCostBook.Min_Paint_Cost = .01;

var response = client.CreateCostMOA(newCostBook);
}
//returns guid of the new cost book

UpdateCostMOA(DTOCostMOA costMOA)

Use this call to update information about a cost book.

Note: If what you want to do instead (or additionally) is to update the
records in the cost book, use the call "UpdateCostRecord(DTOCostMOA
costMOA)" on page 106. For example, if you have a newly created cost
book, it will be populated with the records from the Reference cost book,
and you may want to change some of those records in the new cost book.

In the code below, replace "COST_BOOK_ID" with the text representation of the GUID of
a cost book.

public void updateCostMOA()
{

//get the cost book to be updated
var costBook = client.GetCostMOA(Guid.Parse("COST_BOOK_ID"));

//declare a new instance and populate
var updateBook = new DTOCostMOA();
updateBook = costBook.Data;

// Insert lines below to add or change property values as needed

var response = client.UpdateCostMOA(updateBook);

//error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
//returns Boolean: true = update successful

- 100 -

Cost Modifier Libraries

If you have the appropriate advanced permissions in BUILDER, you can set up one or
more cost modifier libraries for other users to take advantage of when adding and
assigning cost modifiers. This topic explains how to use the BUILDER API to get all of the
available libraries by organization and how to get, create, update, and delete cost mod-
ifier libraries.

Note: A cost modifier library specifies properties of the library. To get a list
of the modifiers in a library does not require as high permissions as work-
ing with libraries themselves. Calls related to modifier lists can be found at
"Get Modifier Lists" on page 72.

Example Code: Get Cost Modifier Libraries

Code examples are in C#.

GetAvailableLibrariesByOrg(Guid id)

This call will get all of the cost modifier libraries available for the Organization specified
in the parameter by its GUID. A cost modifier library contains modifiers of potentially dif-
ferent scopes, so when getting available libraries by Organization, no inventory level
needs to be specified as it does, for example, when getting modifiers themselves.

Note: An alternative call is "GetModifierLibraryByOrg(Guid id)" on the next
page, which returns just one cost modifier library, namely the first avail-
able one for the Organization specified by GUID in the parameter.

The code below gets an array of all available cost modifier libraries for a given Organ-
ization and stores it in an instance of DTOCostModifierLibrary[] named "orgModLibrar-
ies".

To use the code, replace ORG_ID with the string representation of an Organization's
GUID:

public void getAvailableModifierLibrariesByOrg()
{

var orgModLibraries = client.GetAvailableLibrariesByOrg(Guid.Parse("ORG_ID"));
}
// returns array of DTOCostModifierLibrary

- 101 -

GetModifierLibrary(Guid id)

The code below gets a cost modifier library by its GUID and stores it in an instance of
DTOCostModifierLibrary named "modLibrary".

To use the code, replace MOD_ID with the string representation of a cost modifier lib-
rary's GUID.

public void getModifierLibrary()
{

var modLibrary = client.GetModifierLibrary(Guid.Parse("MOD_LIB_ID"));
}
// returns DTOCostModifierLibrary

GetModifierLibraryByOrg(Guid id)

In contrast to the call GetAvailableLibrariesByOrg, this call will get just the first of the
cost modifier libraries available for the Organization specified in the parameter by its
GUID.

The code below gets the first available cost modifier library for a given Organization and
stores it in an instance of DTOCostModifierLibrary named "orgModLibrary1".

To use the code, replace ORG_ID with the string representation of an Organization's
GUID.

public void getModifierLibraryByOrg()
{

var orgModLibrary1 = client.GetModifierLibraryByOrg(Guid.Parse("ORG_ID"));
}
// returns DTOCostModifierLibrary

Example Code: Create Cost Modifier Library

CreateModifierLibrary(DTOCostModifierLibrary modLibrary)

The code below shows the minimum code (what the BUILDER API validates) for creating
a new modifier library.

To use the code, you will need to know the GUID of the Organization you want the lib-
rary associated with. Enter a name for the cost modifier library where prompted, and
replace ORG_ID with the string representation of the Organization's GUID.

- 102 -

public void createModifierLibrary()
{

var modLibrary = new <service reference name>.DTOCostModifierLibrary();

modLibrary.CostModLibraryName = "ENTER VALUE HERE";
modLibrary.OrganizationId = Guid.Parse("ORG_ID"); // Assign the library to an Org

// Add more properties as needed

var response = client.CreateModifierLibrary(modLibrary);
}
// returns guid of the new modifier library

Example Code: Update Cost Modifier Library

UpdateModifierLibrary(DTOCostModifierLibrary modLibrary)

To use the code below, replace MOD_ID with the string representation of a cost mod-
ifier library's GUID.

public void updateModLibrary()
{

//get the cost modifier library to be updated
var modLibrary = client.GetModifierLibrary(Guid.Parse("MOD_ID"));

//declare a new instance and populate
var updateModLibrary = new <service reference name>.DTOCostModifierLibrary();
updateModLibrary = modLibrary.Data;

//add properties or change property values as needed, for example
updateModLibrary.CostModLibraryName = "MOD_LIB_NAME";

var response = client.UpdateModifierLibrary(updateModLibrary);

//error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = update successful

Example Code: Delete Cost Modifier Library

DeleteModifierLibrary(Guid id)

If you no longer need to use a particular collection of modifiers as a library any more,
you can use this call to delete the library.

To use the code below, replace MOD_LIB_ID with the string representation of a cost
modifier library's GUID.

- 103 -

public void deleteModifierLibrary()
{

var response = client.DeleteModifierLibrary(Guid.Parse("MOD_LIB_ID"));
}
// returns Boolean: true = modifier library deleted

Other Data Libraries
Code Examples: Other Data Sets

Code examples are in C#.

GetOrgInflationSets(Guid id)

This call returns all inflation sets associated with the specified Organization.

To use this code, replace ORG_ID with the text representation of a real Organization
GUID.

public void getOrgInflationSets()
{

var response = client.GetOrgInflationSets(Guid.Parse("ORG_ID"));
}
//returns array of DTOInflationSet

GetOrgRSLSets(Guid id)

This call returns all RSL (remaining service) life sets associated with the specified Organ-
ization.

To use this code, replace ORG_ID with the text representation of a real Organization
GUID.

public void getOrgRSLSets()
{

var response = client.GetOrgRSLSets(Guid.Parse("ORG_ID"));
}
//returns array of DTORSLSet

- 104 -

COST RECORDS

Cost records help with estimation of costs by storing the expected cost for each type of
Component-Section. A cost book (DTOCostMOA) is a collection of cost records. In the
cost record properties, the property MOA_Link records the GUID of the cost book it
belongs to.

Using the BUILDER API, you can get and update cost records. It is especially important to
be able to update cost records, because when a new cost book is formed using the
BUILDER API, it is automatically initiated with the records found in the Reference cost
book. There is no call to delete a cost record.

Get Cost Records

Example Code: Get Cost Records

Code examples are in C#.

GetCostRecord(Guid guid)

This call returns a single cost record, specified by its GUID.

To use the call given below, replace COST_RECORD_ID with the text representation of a
real cost record GUID.

public void getCostRecord()
{

var response = client.GetCostRecord(Guid.Parse("COST_RECORD_ID"));
}
//returns DTOCostRecord

GetCostRecordBySourceId(string id)

This call returns an array of the cost records associated with the specified "source",
which can be the name of the cost records' source or another alternate ID.

IMPORTANT: For this call, the input parameter id needs to be in string
format.

To use the call given below, replace STRING_SOURCE_ID with the name of the source
you want to get the cost records from.

- 105 -

public void getCostRecordBySourceId()
{

var response = client.GetCostRecordBySourceId("STRING_SOURCE_ID");
}
//returns array of DTOCostRecord

GetRecordsByCostBookId(Guid guid)

This call returns an array of the cost records in the specified cost book.

To use the call given below, replace COST_BOOK_ID with the text representation of a
real cost book GUID.

public void getRecordsByCostBookId()
{

var response = client.GetRecordsByCostBookId(Guid.Parse("COST_BOOK_ID"));
}
//returns array of DTOCostRecord

Update Cost Record

Use the call shown here to edit properties in an existing cost record.

Code Example: Update Cost Record

Code examples are in C#.

UpdateCostRecord(DTOCostMOA costMOA)

To update the records in a cost book, use this call. For example, if you have a newly cre-
ated cost book, it will be populated with the records from the Reference cost book, and
you may want to change some of those records in the new cost book.

Note: If what you want to do instead (or additionally) is to update inform-
ation about the cost book the records are contained in, use the call
"UpdateCostMOA(DTOCostMOA costMOA)" on page 100 .

CAUTION: This call returns the GUID of the cost record instead of a
Boolean indicating success or failure, so the response variable is not an
indicator of call success.

To use the code below, replace "COST_RECORD_ID" with the text representation of the
GUID of a cost record.

- 106 -

public void updateCostRecord()
{

//get the cost record to be updated
var costRecord = client.GetCostRecord(Guid.Parse("COST_RECORD_ID"));

//declare a new instance and populate
var uRecord = new DTOCostRecord();
uRecord = costRecord.Data;

// Insert lines below to add properties or change property values as needed

var response = client.UpdateCostRecord(uRecord);

//INCLUDE error message code because response variable is GUID, not Boolean
if (response.Success == false)

Console.WriteLine("update failed");
}
//returns GUID of the cost record

- 107 -

FUNDING

Using the BUILDER API, you can get funding sources associated with a given Organ-
ization, fund funding sources, and update funding records.

Get Funding
Calls listed here allow you to find out where funding is coming from for an Organzation,
and to get details about funding within that source by examining associated DTOFund-
ing objects. The DTOFunding object contains properties such as FundingID, Fund-
ingAmount, and FundingYear.

Code Examples: Get Funding

Code examples are in C#.

GetFundingSourcesForOrganizationId(Guid guid)

This call returns an array of the sources of work funding streams for the specified Organ-
ization.

To use the code below, replace ORG_ID with the string representation of an Organ-
ization's GUID.

public void getFundingSourcesForOrganizationId()
{

var response = client.GetFundingSourcesForOrganizationId(Guid.Parse("ORG_ID"));
}
// returns (service response) array of DTOFundingSource

GetFundingForFundingSource(Guid guid)

Once a funding source has been identified by its GUID (the funding source's FSID prop-
erty), you can examine the DTOFunding objects associated with it.

Tip: To find the GUID of a funding source, you can use the call "Get Fund-
ing" above.

To use the call given below, replace FUND_SOURCE_ID with the string representation of
a funding source's GUID.

- 108 -

public void getFundingForFundingSource()
{

var response = client.GetFundingForFundingSource(Guid.Parse("FUND_SOURCE_ID"));
}
// returns array of DTOFunding

Update Funding Record

Code Example: Update Funding Record

UpdateFundingRecord(DTOFunding fund)

The code to update funding contains two steps to get the funding record to be updated:

1. Retrieve array of funding records by funding source. This makes the properties of
the pre-updated funding records available.

2. Identify the desired funding record item in the array. In the sample code below,
this happens after the variable updateFund is declared to contain the new
(updated) funding record.

To use the code given below, replace FUND_SOURCE_ID with the string representation
of a funding source's GUID (its FSID property).

public void updateFundingRecord()
{

//get the array containing the funding record to be updated
var funds = client.GetFundingForFundingSource(Guid.Parse("FUND_SOURCE_ID"));

//declare new instance, populate with the first funding record in the array AS EXAMPLE
var updateFund = new <service reference name>.DTOFunding();
var updateFund = funds.Data[0];

// now updateFund has all the properties of the first record

//add properties or change property values as needed; for example:
updateFund.FundingAmount = 180000.00;

var response = client.UpdateFundingRecord(updateFund);

//optional error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
// returns Boolean: true = successful update

- 109 -

WORK GENERATION (Work Items)

Work generation in BUILDER involves generating work items, work projects (optional),
and work plans. However, current API functionality with respect to work generation is
limited to work items.

BUILDER API allows you to implement the following list of basic work item capabilities
via the API.

l Get a work item
l Get the activity setting for a work item
l Create a work item
l Update a work item
l Delete a work item
l Retrieve a collection of all work items for a Site
l Retrieve a collection of all work items for a Complex
l Retrieve a collection of all work items for a Facility

Get Work Item

Scope: Site, Complex, Facility; or an individual work item.

The calls described here are for official BUILDER work items. To examine work items gen-
erated by a scenario, refer to the call "GetScenarioWorkItems(Guid id, int skip, int take)"
on page 117.

The options for getting work items are:

l GetWorkItem
l GetSiteWorkItems
l GetComplexWorkItems
l GetFacilityWorkItems

There is also a call for getting the activity option selected for a work item:

l GetActivity

Code Examples: Get Work Item Information

Code examples are in C#.

- 110 -

#GetWorkI

GetWorkItem(Guid id)

When you want to examine a single work item and know its GUID, use this call.

To use the code given below, replace ID with the string representation of a work item's
GUID.

public void getWorkItem()
{

var response = client.GetWorkItem(Guid.Parse("ID"));
}
// returns one DTOWorkItem

GetSiteWorkItems(Guid id, int skip, int take)

This call returns all work items for the specified Site.

To use the code given below, replace SITE_ID with the string representation of a Site's
GUID. Adjust skip and take as needed.

public void getSiteWorkItems()
{

var response = clientGetSiteWorkItems(Guid.Parse("SITE_ID"),0, 100);
}
// returns paged collection of DTOWorkItem

GetComplexWorkItems(Guid id, int skip, int take)

This call returns all work items for the specified Complex.

To use the code given below, replace CPX_ID with the string representation of a Com-
plex's GUID. Adjust skip and take as needed.

public void getComplexWorkItems()
{

var response = clientGetComplexWorkItems(Guid.Parse("CPX_ID"), 0, 100);
}
// returns paged collection of DTOWorkItem

GetFacilityWorkItems(Guid id, int skip, int take)

This call returns all work items for the specified Facility.

To use the code given below, replace FAC_ID with the string representation of a Facil-
ity's GUID. Adjust skip and take as needed.

public void getFacilityWorkItems()
{

var response = clientGetFacilityWorkItems(Guid.Parse("FAC_ID"), 0, 100);
}
// returns paged collection of DTOWorkItem

- 111 -

GetActivity(Guid id, int skip, int take

This call will return a work item activity.

To use the code, replace ACTIVITY_ID with the string representation of an Activity's
GUID. You can find the GUID as the ActivityID property of a work item.

public void getActivity()
{

var response = client.GetActivity(Guid.Parse("ACTIVITY_ID"));
}
// returns one DTOActivity

Create Work Item

In BUILDER, a work plan is what will define, guide, and track progress on sustainment,
modernization, or demolition work that needs to be done. Creating the work plan is the
goal of the inventory, assessment, data reference, and work configuration efforts that
precede it.

In the BUILDER software, a work plan is an aggregate of work items. The call below
shows how to create a work item in the BUILDER API.

Code Example: Create Work Item

Code examples are in C#.

CreateWorkItem(DTOWorkItem workItem)

The code sample given here does not accomplish creation of a complete work item;
rather, it shows the minimum necessary to be validated by BUILDER.

To meet this minimum, you will need to know the Section ID and the cost activity ID.
You will also need to know the work item type, which is an enum. Although there are
four options for the WorkItemType enum, only 1 and 2 are functional in the BUILDER
API.

The WorkItemType enum maps values to status choices as follows:

1 = ComponentSectionWorkItem

2 = FacilityWorkItem

To use the code below,

- 112 -

l Replace SEC_ID with the string representation of the GUID of the Section the work
item is associated with (in this code example, the work item type is a Section work
item).

l Replace COST_ACTIVITY_ID with the string representation of the GUID of the cost
activity.

public void createWorkItem()
{

var csWorkItem = new BuilderPreview.DTOWorkItem();

// Set properties. WorkItemType is an enum
csWorkItem.Type = <service reference name>.WorkItemType.ComponentSectionWorkItem;
csWorkItem.SectionID = Guid.Parse("SEC_ID");
csWorkItem.FiscalYear = 2022;
csWorkItem.ActivityID = Guid.Parse("COST_ACTIVITY_ID");
csWorkItem.EstimateCostOverwrite = false;
//add additional work item property values

var response = client.CreateWorkItem(csWorkItem);
}
//returns guid of new work item

Update Work Item

Subject to your BUILDER user permission level and scope, you can update a work item
using BUILDER API. Example code for the basics of an update is given below, followed by
further explanation of the update pattern.

Code Example: Update Work Item

Code examples are in C#.

UpdateWorkItem(DTOWorkItem workItem)

To use this code, replace ID with the string representation of the work item to be
updated.

public void updateWorkItem()
{

//get the work item to be updated
var wItem = client.GetWorkItem(Guid.Parse("ID"));

//declare a new dto instance and populate
var uWorkItem = new <service reference name>.DTOWorkItem();
var uWorkItem = wItem.Data;

//set or change properties here
uWorkItem.ID = wItem.Data.ID; // populate the new instance
uWorkItem.Type = wItem.Data.Type; // this will probably not change
uWorkItem.FiscalYear = wItem.Data.FiscalYear;

- 113 -

// Insert lines below to add or change property values as needed

//call update function with the new dto object as the parameter
var response = client.UpdateWorkItem(uWorkItem);

//error message code
if (response.Success == false)

Console.WriteLine("update failed");
}
//returns Boolean: true = update successful, and the mapping is correct

Delete Work Item

Code Example: Delete Work item

Code examples are in C#.

DeleteWorkItem(Guid id)

Replace WORK_ITEM_ID with the string representation of a real work item's GUID to
delete the work item.

public void deleteWorkItem()
{

var response = client.DeleteWorkItem(Guid.Parse("WORK_ITEM_ID"));
}
// returns Boolean: true = delete successful

- 114 -

SCENARIOS

Scenarios allow the user to experiment, to apply different funding options and levels
and see the outcome without changing their actual BUILDER data.

Something to keep in mind while working with the Scenarios API calls is that there is a
separate object type, DTOScenarioOrganization, that is different from DTOOrganization.
If you call CreateScenarioOrganizationsForScenario to specify some but not all of a set of
sibling Organzations to use with a Scenario, DTOScenarioOrganization is what you make
use of to specify the Organizations you want to select.

Run Scenario

Code Example

InitiateScenario(Guid id)

This call will run the scenario specified in the parameter. To use the code shown, replace
SCENARIO_ID with the string representation of a scenario's GUID.

public void initiateScenario()
{

var inQ = client.InitiateScenario(Guid.Parse("SCENARIO_ID"));
}
// returns Boolean: true = scenario put in queue to be run

Get Scenario Information

The code examples here are for examining scenarios and getting other information
about scenarios, such as an array of work items generated by a particular scenario.

Code Examples: Get Scenario Information

Code examples are in C#.

GetOrgScenarios(Guid id)

This call returns an array of all scenarios in the Organization specified in the parameter.
The call is also useful for tracking down the GUID of a scenario in order to use it as a
parameter in another call such as GetScenarioStatus.

- 115 -

To use this code, replace ORG_ID with the string representation of an Organization's
GUID.

public void getOrgScenarios()
{

var response = client.GetOrgScenarios(Guid.Parse("ORG_ID"));
}
// returns array of DTOScenario

GetScenario(Guid id)

This call returns (but does not automatically display) a scenario. The input parameter
that you need to provide is the GUID of a scenario.

Tip: One way to come up with the GUID of a scenario is to run the call
"GetOrgScenarios(Guid id)" on the previous page.

To use the code, replace SCENARIO_ID with the string representation of a scenario's
GUID.

public void getScenario()
{

var response = client.GetScenario(Guid.Parse("SCENARIO_ID"));
}
// returns DTOScenario

GetScenarioStatus(Guid id)

This call gets the status of the scenario specified by its GUID. To use the call given
below, replace SCENARIO_ID with the string representation of a scenario's GUID.

public void getScenarioStatus()
{

var response = client.GetScenarioStatus(Guid.Parse("SCENARIO_ID"));
}
// Returns an enum that indicates status of the scenario

The value of the enum returned shows the status of the scenario, as follows:

0 = Stopped
1 = Start
2 = Running
3 = Queued

100 = Complete
-1 = NeverRun
-2 = ErrorOccurred
-3 = BeingAborted
-4 = Aborted

- 116 -

GetScenarioWorkItemCount(Guid id)

This call returns a count of the work items generated by the scenario specified in the
parameter.

To use the code shown, replace ID with the string representation of a scenario's GUID,
which is the ID field of the scenario.

public void getScenarioWorkItemCount()
{

var response = client.GetScenarioWorkItemCount(Guid.Parse("SCENARIO_ID"));
}
// returns integer that is count of the scenario work items

GetScenarioWorkItems(Guid id, int skip, int take)

This call returns an array of the work items generated by the specified scenario.

Caution: The work items returned are in the work item format. But keep in
mind that these are not actual work items created and stored in BUILDER.
They are "scenario work items" only; that is, they are hypothetical and
exist only in the framework of the scenario.

To use this code, replace SCENARIO_ID with the with the string representation of a scen-
ario's GUID, which is the ID field of the scenario.

public void getScenarioWorkItems()
{

var response = client.GetScenarioWorkItems(Guid.Parse("SCENARIO_ID"), 0, 100);
}
// returns array of DTOWorkItem

GetAvailableScenarioSystems(Guid ID)

This call returns all Systems in the scope of the scenario specified in the parameter.

To use this code, replace SCENARIO_ID with the with the string representation of a scen-
ario's GUID, which is the ID field of the scenario.

public void getAvailableScenarioSystems()
{

var response = client.GetAvailableScenarioSystems(Guid.Parse("SCENARIO_ID"));
}
// returns array of DTOScenarioSystem

- 117 -

Create Scenario

When you create a scenario, many properties will need to be configured. This section
will guide you through the process. It covers

l Creating a scenario with the minimum required properties
l Creating scenario Organizations and Systems (two separate calls)
l Changing funding from unconstrained to constrained for a scenario
l Retrieving Organization information needed for the minimum required properties

Code Examples: Create and Configure Scenario

Code examples are in C#.

CreateScenario(new DTOScenario dtoScenario)

The code example below shows the minimum required properties for a scenario, with
sample values. Each required property, except newScenario.Name, is explained
after the end of the code example.

public void createScenario();
{

var newScenario = new <service reference name>.DTOScenario();

//Set the minimum properties validated by BUILDER

newScenario.Name = "<scenario name string>";

newScenario.CopyFirstYear = false;
newScenario.CreateSampleWorkItems = false;
newScenario.FundingConstrained = false; // if true, must define add'l properties
newScenario.InflationConstrained = false;
newScenario.PreviousFYWorkCompleted = false; // if true, define add'l properties
newScenario.FCI_Funding = false;
newScenario.UseAllSystems = true;
newScenario.SimulationYears = 6;

newScenario.Org_ID = Guid.Parse("ORG_ID");
newScenario.CostBookID = Guid.Parse("COST_BOOK_ID");
newScenario.FCIPolicyID = Guid.Parse("FCI_POLICY_ID");
newScenario.InflationBookID = Guid.Parse("INFLATION_BOOK_ID");
newScenario.PolicySequenceID = Guid.Parse("POLICY_SEQ_ID");
newScenario.PrioritizationSchemeID = Guid.Parse("PRIORITIZATION_SCHEME_ID");
newScenario.RSLBookID = Guid.Parse("RSL_BOOK_ID");

//Make the call
var response = client.CreateScenario(newScenario);

}
//returns ID of the newly created scenario if successful

- 118 -

newScenario.CopyFirstYear

(In the BUILDER web application, this is a checkbox under the Scope tab.)

l If false, scenario will start from scratch to create first year's work items
l If true, will copy in current work items for first year instead of creating new

newScenario.CreateSampleWorkItems

(In the BUILDER web application, this is a checkbox under the Scope tab.)

If you set this property to true, you don't need to create sample work items yourself;
this property is simply a setting saying whether you want to allow or not allow sample
work items to be generated in the scenario (based on sample inspections).

l If false, disregard any sampling
l If true, sample work items may be generated by the scenario (if there are sample

inspections)

newScenario.FundingConstrained

l In the example code, this has been set to false
l If true, you will need to define additional properties (see the call "CreateCon-

strainedFundingForScenario(DTOFundingSource dtoFundSource, Guid id)" on
page 124

newScenario.InflationConstrained

l If false, no inflation will be applied
l If true, will apply inflation configuration set forth in the active inflation book (see

"newScenario.InflationBookID" on page 121)

newScenario.PreviousFYWorkCompleted

l If false, BUILDER assumes that NONE of the previous years' work has been com-
pleted

l If true, all previous FY work items will be treated as having been completed for
the years specified in the scenario's PreviousFY property

CAUTION: Before you build the string to be used as the Pre-
viousFY property, make sure that each of the years you select actu-
ally contains work items. If you try to "trust" (that work items have
been completed) a year in which there are no work items, the call
might not work properly.

- 119 -

In the BUILDER Web interface, the list of fiscal years to choose from
has been populated with only the years that contain work items. But
the API does not validate for presence of work items in the fiscal
years selected.

newScenario.FCI_Funding

(This property corresponds to the "Use FCI Objectives to Generate Funding Profile"
checkbox at the Funding tab in the BUILDER web application.)

l If false, FCI objectives will not be used to generate the funding profile
l If true, FCI objectives will be used to generate the funding profile

newScenario.UseAllSystems

(When true, this property corresponds to marking the "Select All" checkbox at the Scope
tab when creating a new scenario in the BUILDER web application.)

If this property is not officially validated by the BUILDER API, if it is not set to either true
or false, and thus Null, the API will probably throw an error.

l If true (the default), all available Systems will be used when running the scenario
l If false, you need to configure what Systems are to be used by running the call

"CreateScenarioSystemsForScenario(Guid id, DTOScenarioSystem[] systems, bool
useAllSystems)" on page 123.

Available systems can be determined by running the call "GetAvailableScenarioSystems
(Guid ID)" on page 117

newScenario.SimulationYears

Enter the number of years you want to simulate, as an integer.

newScenario.Org_ID

Replace ORG_ID with the string representation of the GUID of the Organization the scen-
ario is associated with.

newScenario.CostBookID

Replace COST_BOOK_ID with the string representation of the GUID of the cost book to
be used. One way to find this is to run the call "GetCostMOAForOrganizationId(Guid
guid)" on page 126.

- 120 -

newScenario.FCIPolicyID

Replace FCI_POLICY_ID with the string representation of the GUID of the FCI Policy to be
used. One way to find this is to run the call "GetOrgFCIPolicies(Guid guid)" on page 126.

newScenario.InflationBookID

Replace INFLATION_BOOK_ID with the string representation of the GUID of the inflation
book to be used. One way to find this is to run the call "GetOrgInflationSets(Guid guid)"
on page 127.

newScenario.PolicySequenceID

Replace POLICY_SEQ_ID with the string representation of the GUID of the policy
sequence to be used. One way to find this is to run the call "GetOrgPolicySequences
(Guid guid)" on page 127.

newScenario.PrioritizationSchemeID

Replace PRIORITIZATION_SCHEME_ID with the string representation of the GUID of the
prioritization scheme to be used. One way to find this information is to run the call
"GetOrgPrioritizationSchemes(Guid guid)" on page 127.

newScenario.RSLBookID

Replace RSL_BOOK_ID with the string representation of the GUID of the RSL (remaining
service life) book to be used. One way to find this is to run the call "GetOrgRSLSets(Guid
guid)" on page 127.

Code Examples: Create Scenario Organizations and Systems

Creating Scenario Organizations and specifying scenario Systems to be used for the scen-
ario are optional process of selecting specific Organizations in the tree and/or specific
Systems to be involved in the scenario. See the description of each call to determine
whether you need to use either (or both) of them.

Code examples are in C#.

- 121 -

CreateScenarioOrganizationsForScenario(DTOScenarioOrganization[]
dtoScenarioOrgs, Guid id)

When this call is needed

An example of when you would use this call is when you have a collection of Organ-
izations at the same level in the tree, and you want to run a scenario on some of these
Organizations but not all of them. This is common when trying to create a scenario high
up in the inventory tree.

If either of the following is true, you will NOT need this call:

l You want your scenario to include all the suborganizations under the highest level
Organization that applies to the scenario, or

l The Organization you want to run the scenario on has no suborganizations

Code preview

The code below shows how to build an array of DTOScenarioOrganization based on the
Organizations you want to use if you need to select some but not all of equal-level
Organizations. The call itself will need, as its parameters, (1) the array of Organizations
you have pre-built, and (2) the ID of the scenario.

Best Practice Tip: Unless the source group of suborganizations from which
you will select is small, you should use GetOrganizationsByParentIDPaged
to get the Organizations under a parent (and then iterate), because if you
simply use GetOrganizationsByParentID, that call could time out.

Ultimately you need to have your array (scenarioOrgs in the code example) completely
constructed before making the CreateScenarioOrganizationsForScenario call.

Note: The DTO objects you will be getting and selecting from are of the
type DTOOrganization, but the array you will create is populated with DTO
objects of the type DTOScenarioOrganization. Hence the manual pop-
ulation of the array. (Only the Organization's ID property needs to be trans-
ferred into the new array from the source Organization.)

Prerequisite

The scenario associated with this call must be or have been created before invoking
CreateScenarioOrganizationsForScenario because the scenario's ID is one of the para-
meters.

- 122 -

Example code

public void createScenarioOrganizations();
{

//scenario's Org_ID property is the GUID of the parent Org you'll select Orgs from

var subOrgs = client.GetOrganizationsByParentIDPaged(Guid.Parse("Scenario.Org_ID"),
0, 50);

//Add code to iterate and store in subOrgs

//Next, create new array for holding the Orgs you want. Note transition from
// DTOOrganization[] in first line(s) of code to DTOScenarioOrganization[]
//
var scenarioOrgs = new <service reference name>.DTOScenarioOrganization[2];

//Set up the first item for the array
var firstOrg = new <service reference name>.DTOScenarioOrganization();
firstOrg.ScenarioOrgID = Guid.NewGuid(); // each item needs its own GUID assigned
firstOrg.ScenarioID = Guid.Parse("ScenarioID"); // will be same for all items

firstOrg.OrganizationID = subOrgs.Data[0].ID; // want just the ID from the
//relevant suborganization

//Pass it into the first slot of the array
scenarioOrgs[0] = firstOrg;

//Set up the next item for the array, in this case the last entry in subOrgs
var lastOrg = new <service reference name>.DTOScenarioOrganization();
lastOrg.ScenarioOrgID = Guid.NewGuid(); // new guid
lastOrg.ScenarioID = Guid.Parse("ScenarioID"); // same for all items
lastOrg.OrganizationID = subOrgs.Data[subOrgs.Data.Length - 1].ID;

//Pass it into second slot of array
scenarioOrgs[1] = lastOrg;

//Make the call
client.CreateScenarioOrganizationsForScenario(scenarioOrgs, Guid.Parse("ScenarioID"));

}
//returns Boolean: true = success

CreateScenarioSystemsForScenario(Guid id, DTOScenarioSystem[]
systems, bool useAllSystems)

The most common case for a scenario is that all available Systems are selected for the
scenario to act on, and that is the default.

However, if you want to select only some Systems to use for the scenario's Organ-
izations, use this call. (The call corresponds to selecting from the System checkboxes
below the Select All checkbox when creating or editing a scenario in the web applic-
ation.)

Prerequisites

l The scenario associated with this call must be or have been created before invok-
ing CreateScenarioSystemsForScenario because the scenario's ID is one of the

- 123 -

call's parameters.
l The .UseAllSystems property of that scenariodoes not need to have been

been set to false, because that will be taken care of by the third parameter of this
call.

l If applicable to your situation, you need to have already successfully picked selec-
ted suborganizations. (See "When this Call Is Needed" at the description of the
call CreateScenarioOrganizationsForScenario.)

l You need to know which Systems you want used in the scenario. The call
"GetAvailableScenarioSystems(Guid ID)" on page 117 will show what Systems are
available.

Undoing the effects of this call

If you use this call to limit which Systems are used for the scenario, and then the situ-
ation changes such that you want to use all Systems, the best way to accomplish this is
to run the UpdateScenario call with the following line of code, replacing updateScenario
with the name of your scenario:

updateScenario.UseAllSystems = true

Example code

public void createScenarioSystems();
{

var availableSystems = client.GetAvailableScenarioSystems(Guid.Parse("ScenarioID"));
//The above returns a list of everything available to be selected in the Org
// associated with the scenario you have supplied the GUID for. It doesn't matter
// whether the Organization actually contains any Systems of that type yet.

//Next, create new array to hold the Systems you want the scenario to use.
var scenarioSystems = new DTOScenarioSystem[2]; // adding 2 systems to scope

//For this example, add first and last available scenario System to scenario scope
scenarioSystems[0] = availableSystems.Data[0];
scenarioSystems[1] = availableSystems.Data[availableSystems.Data.Length-1];

//When making the call, important to supply false for the last parameter
//(false means that it is false that you want all systems)
var response2 = client.CreateScenarioSystemsForScenario(Guid.Parse("ScenarioID"),

scenarioSystems, false);
}
//returns Boolean: true = success

CreateConstrainedFundingForScenario(DTOFundingSource dtoFundSource,
Guid id)

Use this call when you want to change a scenario's funding source from unconstrained
(the default) to constrained.

- 124 -

If funding is not constrained, funds are divided so that the same amount of money is
allocated to each year. If funding is constrained, you select a funding source that pre-
defines how much is available for each year.

When the call succeeds, it changes the scenario's .Constrained property to true.

Prerequisites

l ID of the Organization associated with the scenario (the scenario's Org_ID prop-
erty). This will be used as the parameter to "GetFundingSourcesForOrganizationId
(Guid guid)" on page 108 in the code example, and is called SCENARIO_ORG_ID in
this example.

l ID of the scenario. This is called SCENARIO_ID in the code example. To find the ID
of the scenario, you can use the call "GetOrgScenarios(Guid id)" on page 115,
passing in the Organization ID described above, and selecting the desired scenario
from the array of DTOScenario returned.

You will also need to select which funding source you want to constrain.

Code with higher level of commenting

public void createConstrainedFundingForScenario()
{

// Step 1. Find available funding sources: Step 1 returns
var funds = client.GetFundingSourcesForOrganizationId(Guid.Parse("SCENARIO_ORG_ID"));

// Step 2. (NOT PROVIDED)
// Use logic, or some other approach, to decide which funding source to constrain
// This code uses as example the first item in the array returned by Step 1.

// Step 3. Create new instance of DTO object and set properties
DTOFundingSource constFunds = new <service reference name>.DTOFundingSource()

//where constFunds is the source to constrain
constFunds.FSID = funds.Data[0].FSID;
constFunds.FSName = funds.Data[0].FSName;
constFunds.Order = funds.Data[0].Order;
constFunds.Org_ID = funds.Data[0].Org_ID;

// Step 4. Make the API call, passing in
// (1) the funding source to be constrained and
// (2) string representation of the ID of the associated Scenario
var response = client.CreateConstrainedFundingForScenario(constFunds,

Guid.Parse("SCENARIO_ID"));
}
// returns Boolean: true = selected source of funds is now constrained

Code with limited comments

public void createConstrainedFundingForScenario()
{

var funds = client.GetFundingSourcesForOrganizationId(Guid.Parse("SCENARIO_ORG_ID"));

// Use logic, or some other approach, to decide which funding source to constrain

- 125 -

// set comments
DTOFundingSource constFunds = new <service reference name>.DTOFundingSource()

// where constFunds represents the source to constrain
constFunds.FSID = funds.Data[0].FSID; // first funding source used as example
constFunds.FSName = funds.Data[0].FSName;
constFunds.Order = funds.Data[0].Order;
constFunds.Org_ID = funds.Data[0].Org_ID;

var response = client.CreateConstrainedFundingForScenario(constFunds,
Guid.Parse("SCENARIO_ID"));

}
// returns Boolean: true = selected source of funds is now constrained

Code Examples: Get Scenario-Related Organization Inform-
ation

When you create a scenario using the call CreateScenario, there is a collection of prop-
erties that you will need to provide values for. The calls below, duplicated from other
locations in the documentation, allow you to get these values.

Code examples are in C#.

GetCostMOAForOrganizationId(Guid guid)

This call returns the cost books associated with the specified Organization.

To use the code below, replace ORG_ID with the string representation of an Organ-
ization's GUID.

public void getCostMOAForOrganizationId()
{

var response = client.GetCostMOAForOrganizationId(Guid.Parse("ORG_ID"));
}
// returns array of DTOCostMOA

GetOrgFCIPolicies(Guid guid)

This call returns all FCI policies associated with the specified Organization.

To use this code, replace ORG_ID with the text representation of a real Organization
GUID. The call returns an array of DTOFCIPoliicy, and in each FCI policy, the FCIPoli-
cyOwnerID property is the GUID of the Organization.

public void getOrgFCIPolicies()
{

var response = client.GetOrgFCIPolicies(Guid.Parse("ORG_ID"));
}
// returns array of DTOFCIPolicy

- 126 -

GetOrgInflationSets(Guid guid)

This call returns all inflation sets associated with the specified Organization.

To use this code, replace ORG_ID with the text representation of a real Organization
GUID.

public void getOrgInflationSets()
{

var response = client.GetOrgInflationSets(Guid.Parse("ORG_ID"));
}
//returns array of DTOInflationSet

GetOrgPolicySequences(Guid guid)

This call returns all policy sequences associated with the specified Organization.

To use this code, replace ORG_ID with the string representation of an Organization's
GUID.

public void getOrgPolicySequences()
{

var response = client.GetOrgPolicySequences(Guid.Parse("ORG_ID"));
}
// returns array of DTOPolicySequence

GetOrgPrioritizationSchemes(Guid guid)

This call returns all prioritization schemes associated with the specified Organization.

To use this code, replace ORG_ID with the string representation of an Organization's
GUID.

public void getOrgPrioritizationSchemes()
{

var response = client.GetOrgPrioritizationSchemes(Guid.Parse("ORG_ID"));
}
// returns array of DTOPrioritizationScheme

GetOrgRSLSets(Guid guid)

This call returns all RSL (remaining service) life sets associated with the specified Organ-
ization.

To use this code, replace ORG_ID with the text representation of a real Organization
GUID.

- 127 -

public void getOrgRSLSets()
{

var response = client.GetOrgRSLSets(Guid.Parse("ORG_ID"));
}
//returns array of DTORSLSet

Update Scenario

Use the call shown here to add or edit properties in an existing scenario.

Code Example: Update Scenario

Code examples are in C#.

UpdateScenario(DTOScenario dtoScenario)

In Step 3 of this call, you will need to set properties. For each scenario property that you
want to change or add, use the format

updatedScenario.<property> = <value>;

WARNING: Any scenario properties that are not set, either using cli-
ent.GetScenario(Guid.Parse("SCENARIO_ID")) (Step 2), or
explicitly set(Step 3), will be SET TO NULL.

To use the code below, replace SCENARIO_ID with the GUID of the scenario you are
updating.

public void updateScenario()
{

//Step 1. Declare new instance of DTO object
var updatedScenario = new <service reference name>.DTOScenario();

//Step 2. Populate it using the get function
updatedScenario = client.GetScenario(Guid.Parse("SCENARIO_ID")).Data;

//Step 3. Add new properties or assign new values to existing ones, for EXAMPLE:
updatedScenario.Name = "<new scenario name>";

//Step 4. Call update function with the new DTO object instance as the parameter
client.UpdateScenario(updatedScenario);

}
// returns Boolean: true = update successful

Below is example code without comments.

- 128 -

public void updateScenario()
{

var updatedScenario = new DTOScenario();

var myScen = client.GetScenario(Guid.Parse("SCENARIO_ID"));
updatedScenario = myScen.Data;
updatedScenario.Name = "<new scenario name>";

var response = client.UpdateScenario(updatedScenario);
}

Compare Scenario Variations

The code example in this topic shows how to make a copy of a scenario to compare
between previous FY work trusted to be completed vs not. The same concept can be
adapted to compare the effects of different changes as well.

UpdateScenario vs. CreateScenario (general to all types of scenario comparisons)

You can run a scenario comparison in one of two ways:

a. Use the "UpdateScenario(DTOScenario dtoScenario) " on the previous page call to
make a new variation of the scenario if it's sufficient to compare the new scenario
variation to a previously generated report of the original condition (because the
original scenario will be overwritten by the changes).

b. Alternatively, use "CreateScenario(new DTOScenario dtoScenario)" on page 118
to create a new scenario, populate it with the original scenario's data, and then
update the new scenario with the changed condition(s) while retaining the ori-
ginal scenario.

How to specify fiscal years to trust

In the example code, the procedure for trusting completion of work in previous fiscal
years has two steps:

l Construct a string specifying the years
l Set the property .PreviousFYWorkCompleted = true

These steps can actually be completed in either order.

CAUTION: Before you build the string to be used as the Pre-
viousFY property, make sure that each of the years you select actu-
ally contains work items. If you try to "trust" (that work items have

- 129 -

been completed) a year in which there are no work items, the call
might not work properly.

In the BUILDER Web interface, the list of fiscal years to choose from
has been populated with only the years that contain work items. But
the API does not validate for presence of work items in the fiscal
years selected.

Running the example code

If you know the GUID of the scenario, you can replace the two lines of code following
the first comment in the example code with the following one line of code, passing in
the scenario's GUID itself (not a text representation) in place of SCENARIO_ID.

var scenarioCopy = client.GetScenario(SCENARIO_ID).Data;

However, if you don't already know the GUID of the scenario, you will want to use the
GetOrgScenarios call (the first line of code below) or another method to find it.

To use the example code, replace ORG_ID with the string representation of the GUID of
the Organization associated with the scenario.

public void compareScenarioFYTrusted();
{

//First, get array of the scenarios associated with the Organization, and select a scenario
var orgScenarios = client.GetOrgScenarios(Guid.Parse("ORG_ID"));
var scenarioCopy = orgScenarios.Data[0]; // selecting first scenario as the example

//Next, start the procedure for trusting that work in previous FY's has been completed
scenarioCopy.PreviousFYWorkCompleted = true; // doesn't automatically make it true for all years

var prevFY = "";

for (int x=0;x < scenarioCopy.SimulationYears; x++)
{

if (x == 0 || x == 1)
{

//build each year onto the string, separated by commas, and using NO SPACES
prevFY += (DateTime.Now.Year - 1).ToString() + ",";

}
}

scenarioCopy.PreviousFY = prevFY;

//Call updates the scenario to trust completion of the work items for the previous years you selected

var response = client.UpdateScenario(scenarioCopy);
}
//returns Boolean: true = update successful

- 130 -

Delete Scenario

DeleteScenario(Guid id)

Replace SCENARIO_ID with the string representation of a real scenario GUID to delete
the scenario.

public void deleteScenario()
{

var response = client.DeleteScenario(Guid.Parse("SCENARIO_ID");
}
// returns Boolean: true = scenario deleted

- 131 -

BUILDER API ADMINISTRATION

This chapter describes API calls that are reserved for BUILDER administrators. Currently
the only reserved call is

SetCurrentUser(string commonName)

This call enables the "Proxy User" below capability.

Proxy User

The API service call described below can be performed only by users with BUILDER
Administrator privilege.

Sample Code: Proxy User Capability

SetCurrentUser(string commonName)

If you have administrative privilege in BUILDER, you can set up one or more special-pur-
pose user accounts and then switch to them as desired by using the proxy user cap-
ability in the BUILDER API. An example of why a proxy user account is useful is that you
can run tests employing user accounts at different privilege levels.

The service call that enables the proxy user capability is SetCurrentUser. The parameter
you need to pass in is the user name for the desired account (called commonName in
the call signature). It represents the certificate common name of the user to switch to.

SetCurrentUser(string commonName);

// returns Boolean: true = user has been set to the name provided

Note: Security will be validated at the server.

- 132 -

REFERENCES

Source of Appendixes:

BUILDERTM Remote Entry Database (BRED) Data Dictionary Version 3.3.7, 2015,
Appendix A.

- 133 -

BRED Data Dictionary
Table: System_Component

Version 3.3.7
Page: 2

APPENDIX A: UNITS OF MEASURE
This table provides for each unit of measure (UOM):
(1) the UOM_ID; (2) the BUILDER™ storage unit (“metric”) abbreviation; (3) the English unit abbreviation;
(4) the conversion factor; and (5) a definition.
Source: BUILDER tm Remote Entry Database (BRED) Data Dictionary Version 3.3.7, 2015, Appendix A.

UOM_ID UOM_MET_UNIT_ABBR UOM_ENG_UNIT_ABBR UOM_CONV Definition
1 EA EA 1 Each
2 LM LF 3.28083399 Linear meter / Linear foot
3 SM SF 10.76386871 Square meter / Square foot
4 CM IN 0.39370079 Centimeter / inch
104 SM SY 1.1959911 Square meter / Square yard
105 CM CY 1.30795074 Cubic meter / Cubic yard
106 FLT FLT 1 Flight (stairs)
107 STP STP 1 Stop (elevator)
108 MBH MBH 1 Thousands of BTU per Hour
109 TON TON 1 Tons (English tons only)
110 AMP AMP 1 Ampere
111 KVA KVA 1 Kilovolt ampere
112 XX XX 1 UOM not defined
113 AC AC 1 Acre
114 BL BL 1 Barrel
115 FA FA 1 Family Units
116 FB FB 1 Linear Feet of Berthing
117 FP FP 1 Firing Points
118 GA GA 1 U.S. Gallon
119 GM GM 1 U.S. Gallons per minute
120 KG KG 1 Thousands U.S. Gallons/Day
121 TH TH 1 Tons per hours
122 TR TR 1 Ton, Refrigeration
123 CF CF 1 Cubic foot
124 KV KV 1 Kilovolt
125 KW KW 1 Kilowatt
126 LN LN 1 Firing Lane
127 MB MB 1 Millions of BTU per hour
128 MG MG 1 Millions of U.S. Gallons
129 MI MI 1 Kilometer/Mile
130 MW MW 1 Megawatt
131 NA NA 1 Not Applicable
132 OL OL 1 Number of Outlets
133 LBS LBS 1 Pounds
134 WATT WATT 1 Watt

BRED Data Dictionary
Table: System_Component

Version 3.3.7
Page: 4

APPENDIX B: SYSTEM IDENTIFIER
SYS_ID (BLDG_SYS_LINK) SYS_DESC UII_CODE IS_UII

201 A10 FOUNDATIONS A10 TRUE
202 A20 BASEMENT CONSTRUCTION A20 TRUE
203 B10 SUPERSTRUCTURE B10 TRUE
204 B20 EXTERIOR ENCLOSURE B20 TRUE
205 B30 ROOFING B30 TRUE
206 C10 INTERIOR CONSTRUCTION C10 TRUE
207 C20 STAIRS C20 TRUE
208 C30 INTERIOR FINISHES C30 TRUE
209 D10 CONVEYING D10 TRUE
210 D20 PLUMBING D20 TRUE
211 D30 HVAC D30 TRUE
212 D40 FIRE PROTECTION D40 TRUE
213 D50 ELECTRICAL D50 TRUE
214 E10 EQUIPMENT E10 TRUE
215 E20 FURNISHINGS E20 TRUE
216 F10 SPECIAL CONSTRUCTION F10 TRUE
217 F20 SELECTIVE BUILDING DEMOLITION F20 TRUE
218 G10 SITE PREPARATIONS G10 TRUE
219 G20 SITE IMPROVEMENTS G20 TRUE
220 G30 SITE CIVIL/MECHANICAL UTILITIES G30 TRUE
221 G40 SITE ELECTRICAL UTILITIES G40 TRUE
222 G90 OTHER SITE CONSTRUCTION G90 TRUE
223 H10 WATERFRONT STRUCTURES H10 TRUE
224 H20 GRAVING DRYDOCKS H20 TRUE
225 H30 COASTAL PROTECTION H30 TRUE
226 H40 NAV DREDGING / RECLAMATION H40 TRUE
227 H50 WATERFRONT UTILITIES H50 TRUE
228 H60 WATERFRONT DEMOLITION H60 TRUE
229 H70 WATERFRONT ATFP H70 TRUE

BRED Data Dictionary
Table: System_Component

Version 3.3.7
Page: 5

APPENDIX C: PAINT TYPE IDENTIFIER
PAINT_TYPE_ID (SEC_PAINT_LINK) PAINT_TYPE_DESC

10 Alkyd Gloss Enamel
20 Alkyd Glss Enl-Low in VOC
30 Alkyd High Gloss Enamel
40 Alkyd Modified Oil Paint
50 Alkyd Paint
60 Alkyd Primer-Enl-Undrcoat
70 Alkyd Resin Paint
80 Alkyd Semigloss Enamel
90 Alkyd-Resin Varnish

100 Alumin Hear Resist 1200 F
110 Aluminum Paint
120 Asphalt Varnish
130 Chlorin Rubber Intermedia
140 Enamel: Floor and Deck
150 Gen Purpose Wax, Solvent
160 Gloss & Semigloss Latex
170 Heat-Resist 400 degF Enml
180 Iron-Oxide Oil Paint
190 Latex Acrylic Emulsion
200 Latex High Traffic
210 Latex Paint
220 Latex Primer Coating
230 Latex Stain
240 Latex Surface Sealer
250 Low Sheen Oil Varnish
260 Moist Curing Polyurethane
270 Oil Stain
280 Phenolic-Resin Spar Varni
290 Iron/ZincOx,Lnsd Oil/Alkd
300 Rubber Paint (Swim Pools
310 Rubber-Base Paint
320 Rubbing Oil Varnish
330 Semi-Transparen Oil Stain
340 Semigloss Enamel
350 Silicone Alkyd Paint
360 Textured Coating
370 Two-Part Epoxy Coating
380 Varnish Surface Sealer
390 Water-Emulsion Floor Wax
400 Water-Resist Spar Varnish
410 Zinc Rich Phenolic Varnis
420 Zinc-Molybdate Alkyd Prim

BRED Data Dictionary
Table: System_Component

Version 3.3.7
Page: 6

APPENDIX D: COMPONENT IDENTIFIER
COMP_ID
(SYS_COMP_COMP_LINK)

COMP_
SYS_LINK

COMP_DESC COMP_IS_
EQUIP

2011 201 A1010 STANDARD FOUNDATIONS 0
2012 201 A1020 SPECIAL FOUNDATIONS 0
2013 201 A1030 SLAB ON GRADE 0
2021 202 A2010 BASEMENT EXCAVATION 0
2022 202 A2020 BASEMENT WALLS 0
2031 203 B1010 FLOOR CONSTRUCTION 0
2032 203 B1020 ROOF CONSTRUCTION 0
2041 204 B2010 EXTERIOR WALLS 0
2042 204 B2020 EXTERIOR WINDOWS 0
2043 204 B2030 EXTERIOR DOORS 0
2051 205 B3010 ROOF COVERINGS 0
2052 205 B3020 ROOF OPENINGS 0
2061 206 C1010 PARTITIONS 0
2062 206 C1020 INTERIOR DOORS 0
2063 206 C1030 SPECIALTIES 0
2071 207 C2010 STAIR CONSTRUCTION 0
2072 207 C2020 STAIR FINISHES 0
2081 208 C3010 WALL FINISHES 0
2082 208 C3020 FLOOR FINISHES 0
2083 208 C3030 CEILING FINISHES 0
2084 208 C3040 INT COATINGS / SPECIAL FINISHES 0
2091 209 D1010 ELEVATORS AND LIFTS 1
2092 209 D1030 ESCALATORS AND MOVING WALKS 1
2093 209 D1020 WEIGHT HANDLING EQUIPMENT 1
2099 209 D1090 OTHER CONVEYING SYSTEMS 1
2101 210 D2010 PLUMBING FIXTURES 1
2102 210 D2020 DOMESTIC WATER DISTRIBUTION 1
2103 210 D2030 SANITARY WASTE 1
2104 210 D2040 RAIN WATER DRAINAGE 1
2105 210 D2090 OTHER PLUMBING SYSTEMS 1
2111 211 D3010 ENERGY SUPPLY 1
2112 211 D3020 HEAT GENERATING SYSTEMS 1
2113 211 D3030 COOLING GENERATING SYSTEMS 1
2114 211 D3040 DISTRIBUTION SYSTEMS 1
2115 211 D3050 TERMINAL & PACKAGE UNITS 1
2116 211 D3060 CONTROLS & INSTRUMENTATION 1
2117 211 D3070 SYSTEMS TESTING & BALANCING 1
2119 211 D3090 OTHER HVAC SYSTEMS AND EQUIPMENT 1
2121 212 D4040 SPRINKLERS 1
2122 212 D4030 STANDPIPE SYSTEMS 1
2123 212 D4050 FIRE PROTECTION SPECIALTIES 1

BRED Data Dictionary
Table: System_Component

Version 3.3.7
Page: 7

COMP_ID
(SYS_COMP_COMP_LINK)

COMP_
SYS_LINK

COMP_DESC COMP_IS_
EQUIP

2124 212 D4010 FIRE ALARM AND DETECTION SYSTEMS 1
2125 212 D4020 FIRE SUPP WATER SUPPLY / EQUIP 1
2129 212 D4090 OTHER FIRE PROTECTION SYSTEMS 1
2131 213 D5010 ELECTRICAL SERVICE & DISTRIBUTION 1
2132 213 D5020 LIGHTING & BRANCH WIRING 1
2133 213 D5030 COMMUNICATIONS & SECURITY 1
2139 213 D5090 OTHER ELECTRICAL SERVICES 1
2141 214 E1010 COMMERCIAL EQUIPMENT 1
2142 214 E1020 INSTITUTIONAL EQUIPMENT 1
2143 214 E1030 VEHICULAR EQUIPMENT 1
2144 214 E1040 GOVERNMENT FURNISHED EQUIPMENT 1
2149 214 E1090 OTHER EQUIPMENT 1
2151 215 E2010 FIXED FURNISHINGS 1
2152 215 E2020 MOVEABLE FURNISHINGS 1
2161 216 F1010 SPECIAL STRUCTURES 0
2162 216 F1020 INTEGRATED CONSTRUCTION 0
2163 216 F1030 SPECIAL CONSTRUCTION SYSTEMS 0
2164 216 F1040 SPECIAL FACILITIES 0
2165 216 F1050 SPECIAL CTRLS / INSTRUMENTATION 0
2171 217 F2010 BUILDING ELEMENTS DEMOLITION 0
2172 217 F2020 HAZARDOUS COMPONENTS ABATEMENT 0
2181 218 G1010 SITE CLEARING 0
2182 218 G1020 SITE DEMOLITION & RELOCATIONS 0
2183 218 G1030 SITE EARTHWORK 0
2184 218 G1040 HAZARDOUS WASTE REMEDIATION 0
2191 219 G2010 ROADWAYS 0
2192 219 G2020 PARKING LOTS 0
2193 219 G2030 PEDESTRIAN PAVING 0
2194 219 G2040 SITE DEVELOPMENT 0
2195 219 G2050 LANDSCPAING 0
2196 219 G2060 AIRFIELD PAVING 0
2201 220 G3010 WATER SUPPLY 0
2202 220 G3020 SANITARY SEWER 0
2203 220 G3030 STORM SEWER 0
2204 220 G3040 HEATING DISTRIBUTION 0
2205 220 G3050 COOLING DISTRIBUTION 0
2206 220 G3060 FUEL DISTRIBUTION 0
2209 220 G3090 OTHER SITE MECHANICAL UTILITIES 0
2211 221 G4010 ELECTRICAL DISTRIBUTION 0
2212 221 G4020 SITE LIGHTING 0
2213 221 G4030 SITE COMMUNICATION AND SECURITY 0
2219 221 G4090 OTHER SITE ELECTRICAL UTILITIES 0
2221 222 G9010 SERVICE AND PEDESTRIAN TUNNELS 0

BRED Data Dictionary
Table: System_Component

Version 3.3.7
Page: 8

COMP_ID
(SYS_COMP_COMP_LINK)

COMP_
SYS_LINK

COMP_DESC COMP_IS_
EQUIP

2222 222 G9090 OTHER SITE CONSTRUCTION 0
2231 223 H1010 SUBSTRUCTURE 0
2232 223 H1020 SUPERSTRUCTURE 0
2233 223 H1030 DECK 0
2234 223 H1040 MOORING AND BERTHING SYSTEM 0
2235 223 H1050 REPAIR AND REHABILITATION 0
2236 223 H1060 APPURTENANCES 0
2251 225 H3010 WAVE PROTECTION 0
2252 225 H3020 SLOPE PROTECTION 0
2261 226 H4010 DREDGING 0
2262 226 H4020 DREDGING DISPOSAL 0
2263 226 H4030 RECLAMATION 0
2271 227 H5010 CIVIL/MECHANICAL UTILITIES 0
2272 227 H5020 ELECTRICAL UTILITIES 0
2273 227 H5030 FIRE PROTECTION AND SUPPRESSION 0
2281 228 H6010 IN OR OVER-WATER DEMOLITION 0
2282 228 H6020 NON IN OR OVER-WATER DEMOLITION 0
2283 228 H6030 HAZARDOUS COMPONENTS ABATEMENT 0
2291 229 H7010 WATERSIDE ATFP 0
2292 229 H7020 LANDSIDE ATFP 0

SAMPLE USE CASES

This chapter provides some sample use cases that can be studied and/or copied and
modified:

l Get inventory tree data down to the Facility level
l Add a Facility to the inventory tree
l Add inventory to a Facility
l Update inventory (change quantity of a Section)
l Add a Direct Rating inspection

Use Case 1: Get Inventory

This use case shows how to get assets in the inventory tree down to the Facility level. It
is intended to show how to follow one branch down the inventory tree, selecting at
each hierarchical level of the tree the next desired inventory item to investigate. It is not
intended to cover the entire tree.

The functions in the sample code display name and/or number (inventory items Facility
or above must have at least one or the other, and may have both), plus the ID property
at each inventory level. As desired, you can substitute different properties to be dis-
played.

Note: To get a performance metric such as CI, FI, or PI, you will need to use
the service call "Get Performance Metrics" on page 94. An exception is at
the Facility level, where you can access CI, FI, PI, and/or FCI as a prop-
erty of the Facility.

How to Use the Code Example

To use the code example provided below,

l Run the code one function at a time.
l Substitute actual IDs (which are GUIDs) for <ID of parent>. For more information

about parent IDs at different inventory levels, see "In Depth: Parent ID Properties
at All Inventory Levels" on page 29.

l The function getOrgs()may need to be used multiple times, depending on
how many Organization levels there are in your inventory tree.

- 140 -

Code Example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.ServiceModel;
using System.Text;
using System.Threading.Tasks;
using BuilderService;

namespace web_service_test
{

class UseCase01
{

BuilderService.BuilderClient client;
DTOOrganization[] rootOrgs;
DTOSite[] rootSites;
public UseCase01()
{

var service = new BuilderClient(); // no parameter needed unless multiple bindings
service.ClientCredentials.UserName.UserName = "<BUILDER user name>";
service.ClientCredentials.UserName.Password = "<BUILDER password>";
// line below is not needed if using endpoint that was preset during configuration
service.Endpoint.Address = new EndpointAddress("<URL of web service>");
client = service;

}

// Identify the root org or site by its having null ParentID
// skip to COMPLEX section if root is a site (i.e., no data in rootOrgs)
public void setRoots()
{

rootOrgs = client.GetOrganizationsByParentID(null).Data;
rootSites = client.GetSitesByParentID(null).Data;

}

// ORGANIZATION

public void getOrgsInRoot() // list orgs under root org; if none, skip to SITE section

{
foreach(DTOOrganization org in rootOrgs)
{

var orgs = client.GetOrganizationsByParentID(ORG_ID).Data;

foreach (var o in orgs)
{

Console.WriteLine("Num: " + o.Number + " Name: " + o.Name);
Console.WriteLine(" " + o.ID + "\n");

}
}

}

public void getOrgs() // list orgs under selected org. Repeat as needed for sub-orgs
{

var orgs = client.GetOrganizationsByParentID(new Guid("<ID of parent>")).Data;

foreach(var o in orgs)

- 141 -

{
Console.WriteLine("Num: " + o.Number + " Name: " + o.Name);
Console.WriteLine(" " + o.ID + "\n");

}
}

// SITE

// Option A: special case of a site directly under root org
public void getSitesInRoot()
{

foreach(DTOOrganization org in rootOrgs)
{

var sites = client.GetSitesByParentID(ORG.ID).Data;

foreach (var o in sites)
{

Console.WriteLine("Num: " + o.Number + " Name: " + o.Name);
Console.WriteLine(" " + o.ID + "\n");

}
}

}

// Option B: list sites under selected org (not root org)
public void getSites()
{

var sites = client.GetSitesByParentID(new Guid("<ID of parent>")).Data;

foreach(var o in sites)
{

Console.WriteLine("Num: " + o.Number + " Name: " + o.Name);
Console.WriteLine(" " + o.ID + "\n");

}
}

// COMPLEX

// Option A: special case where root is a Site
public void getComplexesInRootSite()
{

foreach(DTOSite site in rootSites)
{

var cpxs = client.GetComplexesByParentID(site.ID).Data;

foreach (var o in cpxs)
{

Console.WriteLine("Num: " + o.Number + " Name: " + o.Name);
Console.WriteLine(" " + o.ID + "\n");

}
}

}

// Option B: list complexes under selected site (not root site)
// Note that one complex will be named "Unassigned"
public void getComplexes()
{

var cpxs = client.GetComplexesByParentID(new Guid("<ID of parent>")).Data;

foreach(var o in cpxs)

- 142 -

{
Console.WriteLine("Num: " + o.Number + " Name: " + o.Name);
Console.WriteLine(" " + o.ID + "\n");

}
}

// FACILITY

public void getFacilities() // list facilities under selected complex
// If desired facility appears directly under a site in the BUILDER web interface,
// use the ID of complex named "Unassigned"
{

var facs = client.GetFacilitiesByParentID(new Guid("<ID of parent complex>"), 0, 500).Data;

foreach(var o in facs)
{

Console.WriteLine("Num: " + o.Number + " Name: " + o.Name);
}

}
}

}

- 143 -

Use Case 2: Add a Facility to the Inventory Tree

This use case steps through the code needed to add a Facility to the inventory tree. It
will also explain the different types of properties that belong to the DTOFacility class.

Note: You need BUILDER user permission level of Inspector Supervisor or
above to create a Facility.

How to Use the Code Example

To use the code example provided below, substitute an actual ID property (which is a
GUID) for each instance of <guid> or sample GUID.

Code Example

using System;
using System.Net;
using System.ServiceModel;
using System.Text;
using System.Threading.Tasks;
using BuilderService;

namespace web_service_test
{

class UseCase02Fac
{

BuilderService.BuilderClient client;
DTOOrganization rootOrg;
DTOSite rootSite;
public UseCase02Fac()
{

var service = new BuilderClient(); //no parameter needed unless multiple bindings
service.ClientCredentials.UserName.UserName = "<user name>";
service.ClientCredentials.UserName.Password = "<password>";
// line below is not needed if using endpoint that was preset during configuration
service.Endpoint.Address = new EndpointAddress("<URL of web service>");
client = service;

}

public void createFac()
{

var theFac = new DTOFacility();

// set required properties
theFac.Name = "Meadow Lane"; //name *OR* number required; ok to have both
theFac.Number = "0005";
theFac.ComplexID = new Guid("4604ef49-5a11-47de-8d25-e03c28f8c3fe");
theFac.YearConstructed = 2016;
theFac.StatusID = 1; // GetBuildingStatuses call returns options
theFac.UseTypeID = 23; // use lookup; see useTypeLookup() below
theFac.ConstructionTypeID = 2; // use lookup; see constructionTypeLookup()
theFac.NumberFloors = 1;
theFac.Quantity = 7000; // this is square feet of area if UM = English;

// square meters if UM = metric

- 144 -

// end of required properties

// optional properties
theFac.BuildingTypeID = 3; // use lookup; see FacBuildingTypeLookup()

// output to console
Console.WriteLine(client.CreateFacility(theFac).Data.ToString());
Console.Read();

}

public void useTypeLookup() //display output of GetFacilityUseTypes lookup
{

foreach (var item in client.GetFacilityUseTypes(0, 30).Data)
Console.WriteLine(item.Description + ": " + item.ID.ToString());

Console.Read();
}

public void constructionTypeLookup() //display output of GetFacilityConstructionTypes lookup
{

foreach(var item in client.GetFacilityConstructionTypes(0,30).Data)
Console.WriteLine(item.Description + ": " + item.ID.ToString());

Console.Read();
}

public void FacBuildingTypeLookup() //display output of GetFacilityBuildingTypes lookup
{

foreach(var item in client.GetFacilityBuildingTypes(0, 30).Data)
Console.WriteLine(item.Description + ": " + item.ID.ToString());

Console.Read();
}

}
}

- 145 -

Use Case 3: Add Inventory to a Facility

This use case steps through the code needed to add inventory to a Facility, including
determining the CMCID (Component Material Category ID).

How to Use the Code Example

To use the code example provided below,

l Know either the GUID (ID property) or the AlternateID property for the Facil-
ity you wish to add inventory to. Do one of the following:

a. Substitute the GUID for <guid> in the function dispGetFac(), or
b. Substitute the AlternateID for Tiger in dispGetFacAlt().

l For each instance of <guid> or sample GUID, substitute an actual ID (which is a
GUID); more detail at next bullet point.

l Run the functions clubPlumbing(), fixtures(), and Wsinks() one at a
time, filling in the GUID returned from creating a higher level inventory item as
the parent ID for the inventory item the next level down. The parent ID property
may be FacilityID, SystemID, or ComponentID, depending on the
hiearchical level of the inventory item being created.

Code Example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.ServiceModel;
using System.Text;
using System.Threading.Tasks;
using BuilderService;

namespace web_service_test
{

class UseCase03Fill
{

BuilderService.BuilderClient client;
public UseCase03Fill()
{

var service = new BuilderClient(); // no parameter needed unless multiple bindings
service.ClientCredentials.UserName.UserName = "<user name>";
service.ClientCredentials.UserName.Password = "<password>";
// line below is not needed if using endpoint that was preset during configuration
service.Endpoint.Address = new EndpointAddress("<URL of web service>");
client = service;

}

- 146 -

// Get Facility, Option A: get by GUID
public void dispGetFac() // get the Facility you want to add inventory to
{

var fac = client.GetFacility(new Guid("5d6262c0-4a91-44ec-9af5-e2e5afb3b55b")).Data;

Console.Write("Name:" + fac.Name + "\nNumber" + fac.Number);
}

// Get Facility, Option B: get by AlternateID
public void dispGetFacAlt() // alternatively, get Facility by alternate ID
{

var fac = client.GetFacilityByAlternateID("Tiger").Data;

foreach(DTOFacility item in fac) // Alternate ID is potentially not unique
{

Console.WriteLine("CI:" + item.CI.ToString());
}

}

public void clubPlumbing() // create a System in the Facility
{

var sys = new DTOSystem();

// identify the parent Facility
sys.FacilityID = new Guid("e7b69a3f-8c91-4364-bac4-87311bb2da0d");

// to get SystemTypeID, use function getSysTypeExp() below
sys.SystemTypeID = 210;
sys.Name = "clubhouse plumbing";
Console.WriteLine(client.CreateSystem(sys).Data.ToString());

}

public void fixtures() // Create a Component in the System created above
{

var comp = new DTOComponent();

// identify the parent System
comp.SystemID = new Guid("fcfca311-542f-460b-942f-a8ef826f0cac");

// To get ComponentTypeID, use function getCompTypeExp() below
comp.ComponentTypeID = 2101;

Console.WriteLine(client.CreateComponent(comp).Data.ToString());
}

// Create a Section in Component in the Component created above
public void Wsinks()
{

var sec = new DTOSection();

// identify the parent Component
sec.ComponentID = new Guid("90a18f4f-0753-4bc6-bd9f-b446fb9a6082");

sec.Quantity = 2;

- 147 -

sec.YearBuilt = 2017;

sec.IsPainted = false;

// To get CMCID (Component Material Category ID), use getSecTypeExp() below
sec.CMCID = 2165;
Console.WriteLine(client.CreateSection(sec).Data.ToString());

}

// Functions below output System/Component/Section types

// Use function getSysTypeExp() to show System types
// Then select number 210 for plumbing system

public void getSysTypeExp()
{

foreach(var item in client.GetSystemTypes().Data)
{

Console.WriteLine(item.ID.ToString() + ": " + item.Description);

}
}

// show Component types available for a plumbing system (plumbing=#210)
// Then select Component #2101, plumbing fixtures
public void getCompTypeExp()
{

foreach(var item in client.GetComponentTypes(210).Data)
{

Console.WriteLine(item.ID.ToString() + ": " + item.Description);
}

}

// show Section types available for Component Type #2101 (plumbing fixtures)
// Then select Section Type #2165, the CMCID for sinks
public void getSecTypeExp()
{

foreach (var item in client.GetComponentMaterialCategories(2101).Data)
Console.WriteLine(item.ID + ": " + item.Description);

}

}
}

- 148 -

Use Case 4: Update Inventory Data

This use case shows updating a Facility. The key function is provided both with extensive
comments ("Verbose") and without.

How to Use the Code Example

To use the code example provided below, substitute the ID property of the inventory
item you are updating where <guid> appears in the example.

Code Example

using System;
using System.Net;
using System.ServiceModel;
using System.Text;
using System.Threading.Tasks;
using BuilderService;

namespace web_service_test
{

class UseCase04Update
{

BuilderService.BuilderClient client;

public UseCase04Update()
{

var service = new BuilderClient(); //no parameter needed unless multiple bindings
service.ClientCredentials.UserName.UserName = "<username>";
service.ClientCredentials.UserName.Password = "<password>";
// line below is not needed if using endpoint that was preset during configuration
service.Endpoint.Address = new EndpointAddress("<URL of web service>");
client = service;

}

public void updateFacilityVerbose() // use this function OR updateFacility() below
{

// step 1a. create new instance of dto object
var theFacility = new DTOFacility();

// step 1b. set it equal to returned value from get function
theFacility = client.GetFacility(new Guid("<guid>")).Data;

//step 2.
// (a) assign new values to properties that you want to change,
// AND/OR
// (b) add one or more new properties.
//The statement format is the same either way

// (a) property change, for example the Facility has been added on to, is now larger:
theFacility.Quantity = 4500;

// (b) add a new property, for example an alternate ID:
theFacility.AlternateID = "01467"

- 149 -

// step 3. call the update function with the new dto object as the parameter
client.UpdateFacility(theFacility);

}

// this is the same function, just without the comments
public void updateFacility()
{

var theFacility = new DTOFacility();
theFacility = client.GetFacility(new Guid("<guid>")).Data; //sub real ID for <guid>

theFacility.Quantity = 4500;
theFacility.AlternateID = "01467"

client.UpdateFacility(theFacility);
}

}
}

- 150 -

Use Case 5: Create a Direct Rating Inspection

This use case creates some inventory to be inspected, and shows creating a direct rating
inspection.

How to Use the Code Example

To use the code example provided below,

l Substitute an actual ID (which is a GUID) for each placefiller <guid> in the use
case.

l Start by running the function clubPlumbing(), using as sys.FacilityID
the guid of a Facility that does not already contain a Plumbing system. This will
run clubPlumbing(), fixtures(), Lsinks(), and Wsinks() to create
inventory to be inspected.

l Next, run createInsp(), getRollupInit(), and getWsinksCI().
l Optionally, this can be followed by running updateSinkInspection(),
getRollupInit(), and getWsinksCI() to see the effect on the CI of the
inspected section. The code example changes the sample condition rating to 95,
but this value can be set as desired.

l See Direct Rating Inspections: Color vs. Condition Rating for the sample condition
rating settings equivalent to each direct rating color selection (Green, Amber,
Red).

Code Example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.ServiceModel;
using System.Text;
using System.Threading.Tasks;
using BuilderService;

namespace web_service_test
{

class UseCase05Direct
{

BuilderService.BuilderClient client;
DTOOrganization rootOrg;
DTOSite rootSite;

public UseCase05Direct()
{

var service = new BuilderClient(); //no parameter needed unless multiple bindings
service.ClientCredentials.UserName.UserName = "<username>";
service.ClientCredentials.UserName.Password = "<password>";

- 151 -

#Direct

// line below is not needed if using endpoint that was preset during configuration
service.Endpoint.Address = new EndpointAddress("<URL of web service>");
client = service;

}

public void createInsp()
{

var insp = new DTOInspection();
insp.SectionID = new Guid("<guid>"); // enter guid of Wsinks
insp.Date = DateTime.Now;
insp.IsSampling = false;
insp.Type = 2; // type=Direct Rating, from InspectionType enum; var type=short
insp.Source = "Inspection"; // source=Inspection, from InspectionSource enum;

// var type=string

// enter information of samples.
// If isSampling is false, there is just one sample that comprises the whole section

var samp = new DTOSample();
samp.IsPaint = false;

//when isSampling = false, sample qty should equal section qty
samp.Quantity = 3;
samp.ConditionRating = 61; // enter a condition rating here (Amber-)

//make array for sample properties
DTOSample[] smpArray = { samp };

insp.Samples = smpArray;
Guid theGuid = client.CreateInspection(insp).Data; //store GUID of created inspection
Console.WriteLine(theGuid.ToString());
Console.WriteLine(client.GetInspection(theGuid).Data.CI.ToString());
Console.WriteLine(client.GetSection(new Guid("<guid of Wsinks>")).Data.CI.ToString());
Console.Read();

}

public void updateSinkInspection()
{

// In the line below, enter guid of inspection to be updated
var insp = client.GetInspection(new Guid("<guid>")).Data;

//insp.Samples[0].ConditionRating = 95; // change condition rating to Green
Console.WriteLine(client.UpdateInspection(insp).Data.ToString());
Console.Read();

}

public void getRollupInit()
{

// use InitiateFacilityRollup to roll up, and get the guid for the rollup.
// In the line below, enter guid of the facility to be rolled up
Guid rollupGuid = client.InitiateFacilityRollup(new Guid("<guid>")).Data;

// use guid for the rollup to check status of the rollup
Console.WriteLine(client.GetRollupStatus(rollupGuid).Data);
Console.Read();

}

- 152 -

public void getWsinksCI()
{

// enter guid of Wsinks section in the line below
foreach(var item in client.GetPerformanceRecords(new Guid("<guid>"),

PerformanceRecordType.CI, 2017).Data)
{

Console.WriteLine("Value: " + item.Value.ToString());
Console.WriteLine("Type: " + item.Type.ToString());

}
Console.Read();

}

//create inventory to inspected; just provide Facility ID

// this function will create System AND incorporate lower levels of inventory
public void clubPlumbing()
{

var sys = new DTOSystem();

// on the next line, enter guid of a facility with no Plumbing system entered in BUILDER
sys.FacilityID = new Guid("<guid>");

sys.SystemTypeID = 210;
sys.Name = "clubhouse plumbing";
fixtures(client.CreateSystem(sys).Data);
//Console.WriteLine(toReturn.ToString());

}

public void fixtures(Guid parentID)
{

var comp = new DTOComponent();

comp.SystemID = parentID;

comp.ComponentTypeID = 2101;
Guid compGuid = client.CreateComponent(comp).Data;
Lsink(compGuid);
Wsinks(compGuid);
Console.WriteLine(client.CreateComponent(comp).Data.ToString());

}

public void Lsink(Guid ParentID) // Laundry sink
{

var sec = new DTOSection();

sec.ComponentID = ParentID
sec.Quantity = 1;
sec.YearBuilt = 2015;
sec.IsPainted = false;
sec.Name = "Laundry sink";
sec.CMCID = 21476;

Console.WriteLine(client.CreateSection(sec).Data.ToString());
}

public void Wsinks(Guid ParentID) // Women's room sinks
{

var sec = new DTOSection();

- 153 -

sec.ComponentID = ParentID;
sec.Quantity = 3;
sec.YearBuilt = 2017;
sec.IsPainted = false;
sec.Name = "Ladies room sinks";
sec.CMCID = 41166;

Console.WriteLine(client.CreateSection(sec).Data.ToString());
}

}
}

- 154 -

Index

A

Alternate ID

get inventory by 19

Asset properties

Building/Facility 34

other than Building/Facility 35

Attachments 85

B

BUILDER Administrator Service Calls 132

Building asset properties 34

BuildingStatus enum 43

BuildingStatus Property 43

C

ComplexID property 43

Condition Rating 74

Configuring the API 7

Cost Books 98

Cost Modifiers 56

D

Data Libraries 98

Data Sets 98

Direct Rating

Use Case 151

- 155 -

E

enums

BuildingStatus 43

InspectionSource 79

InspectionType 79

PerformanceRecordType 93

scenario status 116

F

Facility asset properties 34

I

Inflation Books 98

Inspection

Use Case 151

Inspections 74

InspectionSource enum 79

InspectionType enum 79

Inventory

create inventory 41

delete inventory 52

get inventory by Alternate ID 19

get inventory by GUID 15

get inventory by ParentID 22

lock and unlock inventory 40, 78

Rollup 50

search inventory by name 31

update inventory 46

Use Cases 140, 144, 146, 149

- 156 -

K

KBI inspections 83

L

Lock inventory 40, 78

P

ParentID

get inventory by 22

ParentID properties 29

Performance metrics 93

PerformanceRecordType enum 93

Proxy User 132

R

Rollup 50

RSL Books 98

Run scenario 115

S

Scenarios 115

run scenario 115

Scenario status enum 116

Search inventory by name 31

T

Tutorial 9

U

Unlock inventory 40, 78

- 157 -

	INTRODUCTION
	About BUILDER API
	About Permissions
	What's New in BUILDER API

	GETTING STARTED WITH BUILDER API
	Prerequisites
	Configure the API
	Introductory Tutorial

	GLOBAL INFORMATION AND SETTINGS
	BUILDER and Service Versions

	INVENTORY
	About Inventory Service Calls
	About Inventory Sample Use Cases
	Get Assets by GUID
	Get Assets by Alternate ID
	Get Assets by Parent ID
	In Depth: Parent ID Properties at All Inventory Levels
	Search for Assets by Name
	Asset Properties: Building/Facility
	Asset Properties: Other than Facility
	Lock and Unlock Inventory
	Create Inventory
	Update Inventory
	Inventory Rollup
	Delete Inventory

	INVENTORY COST MODIFIERS
	About Inventory Cost Modifiers
	About Inventory Cost Modifier Assignments
	Cost Modifier Service Calls
	Get Available Cost Modifiers
	Create Cost Modifier
	Update Cost Modifier
	Delete Cost Modifier
	Get Cost Modifier Assignments
	Create Cost Modifier Assignment
	Update Cost Modifier Assignment
	Delete Cost Modifier Assignment
	Get Modifier Lists

	INSPECTIONS
	Inspection Service Calls
	Inspection Sample Use Case
	Color vs. Numeric Condition Rating
	Get Inspection
	Lock and Unlock Inventory
	Create Inspection
	Update Inspection
	Delete Inspection

	KNOWLEDGE-BASED INSPECTIONS
	Get Knowledge-Based Inspection

	ATTACHMENTS
	Fetch Attachment
	Add Attachment
	Delete Attachment

	PERFORMANCE METRICS
	About Performance Metrics
	Get Performance Metrics

	WORK CONFIGURATION
	Standards
	Policies
	Get Policy Sequences
	Get FCI Policies
	Get Prioritization Schemes

	DATA LIBRARIES
	Cost Data Libraries (Cost Books)
	Cost Modifier Libraries
	Other Data Libraries

	COST RECORDS
	Get Cost Records
	Update Cost Record

	FUNDING
	Get Funding
	Update Funding Record

	WORK GENERATION (Work Items)
	Get Work Item
	Create Work Item
	Update Work Item
	Delete Work Item

	SCENARIOS
	Run Scenario
	Get Scenario Information
	Create Scenario
	Update Scenario
	Compare Scenario Variations
	Delete Scenario

	BUILDER API ADMINISTRATION
	Proxy User

	REFERENCES
	Appendix A: Unit of Measure
	Appendix B: System Identifier
	Appendix C: Paint Type Identifier
	Appendix D: Component Identifier
	SAMPLE USE CASES

	Index
	Bookmarks
	Credentials
	GetVersions
	Converti
	GetOrgan2
	GetSite(
	GetCompl2
	GetFacil2
	GetSyste2
	GetCompo2
	GetSecti3
	GetSecti4
	Display
	GetFacil
	GetSecti
	View
	Code
	GetOrgan
	GetOrganPaged
	GetSites
	GetCompl
	GetFacil
	GetSyste
	GetCompo
	GetSecti
	GetSecti2
	Display
	Display
	AllBldStatuses
	GetUnitO
	GetSyste
	GetCompo
	GetCompo2
	GetMater
	GetSubCo
	GetUnifo
	GetCMCTy
	GPaintTypes
	GetPaint
	CFacility
	UpdFac
	Global
	Site
	Facility
	DeleteFa
	GetModsSite
	GetModsCpx
	GetModsFac
	GetModsSys
	GetModsComp
	GetModsSec
	UMod
	ViewModAssn
	GetMAssSite
	GetMAssFac
	GetMAssSys
	GetMAssComp
	GetMAssSec
	AddModAssn
	CreateMo
	CreateMo2
	CreateMo3
	CreateMo4
	CreateMo5
	UpdModAssn
	UpdateMo
	UpdateMo2
	UpdateMo3
	UpdateMo4
	UpdateMo5
	GetModif
	GetModif2
	GSecInsp
	Get2
	Code
	AttchDetails
	AttchOwner
	AttchDetOwner
	AttchDetHashOwner
	Add-bmp
	Add-attch
	GetPerf
	UpdateCostBook
	Get
	Create
	Update
	Delete
	UpdateCo
	GFundSrcOrg
	GetWkItem
	GetSiteW
	GetCompl
	GetFacil
	GetActiv
	GetOrgSc
	ScenWkItems
	SysAvail
	Code
	CreateSc
	newScena
	Code2
	ScenOrgs
	ScenSys
	constrain
	VOrgInfo
	GetCostM
	GetOrgFC
	GetOrgIn
	GetOrgPo
	GetOrgPr
	GetOrgRS
	UpdScen
	Use Case 1: Get Inventory
	Use Case 2: Add a Facility to the Inventory Tree
	Use Case 3: Add Inventory to a Facility
	Use Case 4: Update Inventory Data
	Use Case 5: Create a Direct Rating Inspection

